
Motivation Informed Learning Discussion Conclusion

Stochastic Algorithms for Constrained Optimization for Informed Learning

Frank E. Curtis, Lehigh University

presented at

INFORMS Annual Meeting

Seattle, Washington

October 20, 2024

Stochastic Algorithms for Constrained Optimization for Informed Learning 1 of 19



Motivation Informed Learning Discussion Conclusion

Outline

Motivation

Informed Learning

Discussion

Conclusion

Stochastic Algorithms for Constrained Optimization for Informed Learning 2 of 19



Motivation Informed Learning Discussion Conclusion

Outline

Motivation

Informed Learning

Discussion

Conclusion

Stochastic Algorithms for Constrained Optimization for Informed Learning 3 of 19



Motivation Informed Learning Discussion Conclusion

Constrained continuous optimization

Consider the setting of solving constrained continuous optimization problems of the form

min
x∈Rn

f(x)

s.t. cE(x) = 0

cI(x) ≤ 0

when at any x ∈ Rn one has that

▶ cE(x) and cI(x) can be computed exactly

▶ ∇cE(x) and ∇cI(x) can be computed exactly

▶ f(x) and ∇f(x) cannot be computed exactly—only have (unbiased) estimates
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Where do we go from here?

There are many open questions that are of interest to optimizers such as

▶ other algorithm variants with same guarantees

▶ strengthened guarantees (e.g., other growth conditions, convex settings)

▶ improved worst-case complexity properties

▶ loosened constraint qualification requirements

▶ second-order-type methods

▶ generalization properties

▶ trade-off analyses (Bottou–Bosquet)
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Learning: Prediction function

Aim: Determine a prediction function p from a family P such that

min
x∈Rn

1

no

no∑
j=1

ℓ(

p(aj)

x), bj)

yields an accurate prediction corresponding to any given input feature vector aj .
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Learning: Prediction function, parameterized

Let us say that the family is parameterized by some vector x such that

min
x∈Rn

1

no

no∑
j=1

ℓ(

p(aj , x)

, bj)

yields an accurate prediction corresponding to any given input feature vector aj .
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Learning: Supervised

In supervised learning, we have known input-output pairs {(aj , bj)}no
j=1. Then,

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj)

becomes our empirical-loss training problem to determine the optimal x.
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Learning: Supervised and regularized

If we aim to impose some structure on the solution x, then we may consider

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj) + r(x)

where r is a regularization function.
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Learning: Supervised and regularized

If we aim to impose some structure on the solution x, then we may consider

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj) + r(x)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

where r is a regularization function. Is this good for informed learning?
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Learning: Supervised and informed through model design

One approach is to embed information in the prediction function itself, so

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

ensures that information is enforced with every forward pass. (Is this enough and/or efficient?)
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Learning: Supervised and informed with soft constraints

Added to the loss (e.g., mean-squared error), we might consider

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj) +
1

nc

nc∑
j=1

ϕ(p(ãj , x), . . . , b̃j)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

where {(ãj , b̃j)}nc
j=1 are known input-output pairs and ϕ encodes information.

Stochastic Algorithms for Constrained Optimization for Informed Learning 9 of 19



Motivation Informed Learning Discussion Conclusion

Learning: Supervised and informed with hard constraints

Alternatively (or in addition), how about hard constraints during training, as in

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj)+
1

nc

nc∑
j=1

ϕ(p(ãj , x), . . . , b̃j)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

such that we restrict attention to functions that are informed implicitly?
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Expected-loss training problems

For the sake of generality/generalizability, the expected-loss objective function is∫
A×B

ℓ(p(a, x), b)dP(a, b) ≡ Eω [F (x, ω)] =: f(x)

Assuming values and derivatives can be computed, the constraints are

cE(x) = 0 and cI(x) ≤ 0

e.g., imposing a fixed set of constraints corresponding to a fixed set of sample data
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Predicting movement of a spring

Problem from https://benmoseley.blog/blog/
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Topic #1: Data-driven constraints

The aforementioned approaches struggle with many data-driven constraints.

What other problem formulations should be considered?

▶ progressively more constraints

▶ expectation constraints

▶ probabilistic constraints

▶ noisy constraints

Various modeling issues arise:

▶ ci(x) = 0 for all i = 0, 1, 2, . . . (infeasible?)

▶ 1
N

∑
i∈[N ] ci(x) = 0 (too weak?)

▶ ci(x) = 0 for at least M ∈ [N ] indices in [N ] (combinatorial issues? hard to choose M?)

▶ ci(x) = 0 for all i ∈ [N ] ideally, but satisfied with |ci(x)| ≤ ϵ for all i ∈ [N ]

▶ . . . different from |ci(x)| ≤ ϵ as inequality constraints
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Topic #2: Algorithms that might actually be useful

One should not consider the problem formulation in isolation.

What algorithms should be considered?

▶ feasible methods (impractical)

▶ alternating methods (no evidence of good practical performance)

▶ penalty and augmented Lagrangian methods (might as well not call them constraints)

▶ Newton-based methods for constraints ... ???[
diag(·) JT

k
Jk 0

]
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SQP illustration

c(xk) + J(xk)d = 0

xk
c(x) = 0

regularization / “soft” constraints

“hard” constraints

constrained approach = fundamentally different algorithm

xk

c(x) = 0

regularization / “soft” constraints

“hard” constraints =⇒ step in null space
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Summary

A good-sized body of work on stochastic-gradient-based methods for constrained optimization.

▶ practical methods

▶ convergence and complexity guarantees

▶ . . . numerous open questions remain

However, we should think beyond the “starting point” formulation.

▶ data-driven constraint formulations

▶ corresponding algorithms that may be useful in practice
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Thank you!

Questions?
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