Aggregated bfGs $\,$

Frank E. Curtis, Lehigh University

joint work with

Albert S. Berahas, University of Michigan Baoyu Zhou, Arizona State University

presented at

Donald Goldfarb Celebration Workshop

November 8, 2024

To Don!

BFGS

To Don!

L-

BFGS

Outline

BFGS and L-BFGS

Aggregation

Conclusion

Outline

BFGS and L-BFGS

Aggregation

Conclusion

Aggregated bfGs

Aggregated bfGs

BFGS and L-BFGS 00000000		Aggregation 00000000000000	Conclusion 00
Quasi-Newton	$f(x)$ x_{k+1}	20000000000000000000000000000000000000	
		/	

Notation

 $x_{k+1} - x_k =: s_k$: iterate displacement $\nabla f(x_{k+1}) - \nabla f(x_k) =: y_k$: gradient displacement H_k : Hessian approximation W_k : inverse Hessian approximation

The "G" paper

A Family of Variable-Metric Methods Derived by Variational Means

By Donald Goldfarb

Abstract. A new rank-two variable-metric method is derived using Greenstadt's variational approach [Math. Comp., this issue]. Like the Davidon-Fletcher-Powell (DFP) variable-metric method, the new method preserves the positive-definiteness of the approximating matrix. Together with Greenstadt's method, the new method gives rise to a one-parameter family of variable-metric methods that includes the DFP and rank-one methods as special cases. It is equivalent to Broyden's one-parameter family [Math. Comp., v. 21, 1967, pp. 368-381]. Choices for the inverse of the weighting matrix in the variational approach are given that lead to the derivation of the DFP and rank-one methods directly.

BFGS update

Minimal deviation from W_k subject to secant equation:

$$\min_{W \in \mathbb{R}^{n \times n}} \|W - W_k\|$$

s.t. $W = W^T$, $Wy_k = s_k$

Using weighted Frobenius norm (w/ weight matrix satisfying secant equation):

$$W_{k+1} \leftarrow \left(I - \frac{y_k s_k^T}{s_k^T y_k}\right)^T W_k \left(I - \frac{y_k s_k^T}{s_k^T y_k}\right) + \frac{s_k s_k^T}{s_k^T y_k}$$

Using the Sherman-Morrison-Woodbury formula:

$$H_{k+1} \leftarrow \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)^T H_k \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right) + \frac{y_k y_k^T}{s_k^T y_k}$$

BFGS and L-BFGS 000000000	Aggregation 000000000000000000000000000000000000	Conclusior 00

Geometric properties of Hessian update

Consider the matrices (which only depend on s_k and H_k):

$$P_k := \frac{s_k s_k^T H_k}{s_k^T H_k s_k} \quad \text{and} \quad Q_k := I - P_k.$$

Both H_k -orthogonal projection matrices (i.e., idempotent and H_k -self-adjoint).

- ▶ P_k yields H_k -orthogonal projection onto span (s_k) .
- ▶ Q_k yields H_k -orthogonal projection onto $\operatorname{span}(s_k)^{\perp H_k}$.

$$H_{k+1} \leftarrow \underbrace{\left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)^T H_k \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)}_{\text{rank } n-1} + \underbrace{\frac{y_k y_k^T}{s_k^T y_k}}_{\text{rank } 1}$$

• Curvature projected out along $\operatorname{span}(s_k)$

• Curvature corrected by
$$\frac{y_k y_k^T}{s_k^T y_k} = \left(\frac{y_k y_k^T}{\|y_k\|_2^2}\right) \left(\frac{\|y_k\|_2^2}{y_k^T W_{k+1} y_k}\right)$$
 (inverse Rayleigh).

Aggregated bfGs

Theory of BFGS

BFGS can be superlinearly convergent, e.g., for strongly convex objectives:

- Broyden, Dennis, & Moré, 1973
- Dennis & Moré, 1974
- ▶ Powell, 1976
- ▶ Werner, 1978
- ▶ Ritter, 1979 & 1981
- ▶ Byrd & Nocedal, 1987

${\it Self-Correction}$

Theorem 1 (Self-correcting properties of BFGS)

Suppose $H_1 \succ 0$ and for some (r_1, r_2) the sequence $\{(s_k, y_k)\}$ satisfies

$$r_1 \leq rac{s_k^T y_k}{\|s_k\|_2^2} \;\; and \;\; rac{\|y_k\|_2^2}{s_k^T y_k} \leq r_2.$$

Then, for any $p \in (0,1)$, there exist $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0} \times \mathbb{R}_{>0}$ such that, for any $K \ge 2$, the following hold for at least $\lceil pK \rceil$ values of $k \in [K]$:

$$\lambda_1 \leq \frac{s_k^T H_k s_k}{\|s_k\|_2 \|H_k s_k\|_2} \quad and \quad \lambda_2 \leq \frac{\|H_k s_k\|_2}{\|s_k\|_2} \leq \lambda_3.$$

Proved by monitoring changes in the generalized distance function

$$\psi(H) = \operatorname{tr}(H) + \log(\det(H)),$$

which corresponding to the negative log-determinant distance generating function.

L-BFGS

The algorithm generates $\{(s_k, y_k)\}$, and BFGS generates $\{W_k\}$, where for all $k \in \mathbb{N}$ one sets

$$W_{k+1} \leftarrow \left(I - \frac{y_k s_k^T}{s_k^T y_k}\right)^T W_k \left(I - \frac{y_k s_k^T}{s_k^T y_k}\right) + \frac{s_k s_k^T}{s_k^T y_k}$$

In iteration $k \in \mathbb{N}$, L-BFGS uses only $\{(s_j, y_j)\}_{j=k-m}^k$, and "applies" the update m times.

▶ Notably, the superlinear convergences guarantees of BFGS are lost...

Outline

BFGS and L-BFGS

Aggregation

Conclusion

Aggregated bfGs

Motivating questions

- ▶ What lies *between* L-BFGS (linear) and BFGS (superlinear)?
- ▶ ... can increase m, but do we need $m \to \infty$ to achieve superlinearity?
- Does L-BFGS(n) behave equivalently to BFGS?
- ▶ No, but can we *aggregate* information?
- ... so Agg-BFGS $(m) \equiv$ BFGS (with $m \leq n$)?

Is L-BFGS $(n) \equiv$ BFGS?

Aggregated bfGs

How long does information from early pairs *linger*?

Aggregated bfGs

BFGS and L-BFGS	Aggregation	Conclusion
00000000	000000000000000	00

BFGS: $(s_0, y_0), (s_1, y_1), \dots, (s_k, y_k)$ "stored"

L-BFGS:

BFGS and L-BFGS	Aggregation	Conclusio
000000000	00000000000000	00

BFGS:
$$(s_0, y_0), (s_1, y_1), \dots, (s_k, y_k), (s_{k+1}, y_{k+1})$$

"stored"

L-BFGS:

BFGS:
$$\underbrace{(s_0, y_0), (s_1, y_1), \dots, (s_k, y_k), (s_{k+1}, y_{k+1})}_{\text{"stored"}}$$
L-BFGS:
$$\underbrace{(s_0, y_0), (s_1, y_1), \dots, (s_k, y_k)}_{\text{(solution)}}$$

stored

BFGS:
$$(s_0, y_0), (s_1, y_1), \dots, (s_k, y_k), (s_{k+1}, y_{k+1})$$

"stored"
L-BFGS: $(s_1, y_1), \dots, (s_k, y_k), (s_{k+1}, y_{k+1})$
stored

BFGS:
$$\underbrace{(s_0, y_0), (s_1, y_1), \dots, (s_k, y_k), (s_{k+1}, y_{k+1})}_{\text{"stored"}}$$
L-BFGS:
$$\underbrace{(s_1, y_1), \dots, (s_k, y_k), (s_{k+1}, y_{k+1})}_{\text{stored}}$$
Agg-BFGS:
$$\underbrace{(s_0, y_0), (s_1, y_1), \dots, (s_k, y_k)}_{\text{stored}}$$

BFGS and L-BFGS	Aggregation	Conclusion
000000000	000000000000000	00

Parallel consecutive iterate displacements

BFGS $(W, S_{1:m}, Y_{1:m})$: BFGS matrix with initial $W \succ 0$ and pairs in

$$\begin{array}{lll} S_{1:m}: \begin{bmatrix} s_1 & \cdots & s_m \end{bmatrix} \\ Y_{1:m}: \begin{bmatrix} y_1 & \cdots & y_m \end{bmatrix} \\ \text{where } \rho: \begin{bmatrix} 1/(s_1^T y_1) & \cdots & 1/(s_m^T y_m) \end{bmatrix}^T > 0 \end{array}$$

Theorem 2

Suppose $s_j = \tau s_{j+1}$ for some $j \in \{1, \ldots, m-1\}$ and $\tau \in \mathbb{R}$. Then, with

$$\tilde{S} = \begin{bmatrix} s_1 & \cdots & s_{j-1} & s_{j+1} & \cdots & s_m \end{bmatrix}$$

and $\tilde{Y} = \begin{bmatrix} y_1 & \cdots & y_{j-1} & y_{j+1} & \cdots & y_m \end{bmatrix}$,

yields $BFGS(W, S, Y) = BFGS(W, \tilde{S}, \tilde{Y})$ for any $W \succ 0$.

General case

From the compact form of BFGS updates, one should consider:

$$\tilde{Y}_{1:m} = Y_{1:m} + W^{-1}S_{1:m} \begin{bmatrix} A & 0 \end{bmatrix} + y_0 \begin{bmatrix} b \\ 0 \end{bmatrix}^T$$

Theorem 3

Suppose

- $\blacktriangleright W \succ 0,$
- \triangleright $S_{1:m}$ has linearly independent columns,
- \triangleright $s_0 = S_{1:m}\tau$ for some $\tau \in \mathbb{R}^m$.

Then, there exists $A \in \mathbb{R}^{m \times (m-1)}$ and $b \in \mathbb{R}^{m-1}$ such that (\star) yields

 $BFGS(W, S_{0:m}, Y_{0:m}) = BFGS(W, S_{1:m}, \tilde{Y}_{1:m}).$

 (\star)

Computing A and b

The compact form involves the matrix:

$$R_{1:m} = \begin{bmatrix} s_1^T y_1 & \cdots & s_1^T y_m \\ & \ddots & \vdots \\ & & s_m^T y_m \end{bmatrix}$$

The key equations that one needs to satisfy to compute A and b:

$$\begin{bmatrix} b \\ 0 \end{bmatrix} = -\rho_0 (S_{1:m}^T Y_{1:m} - R_{1:m})^T \tau$$
$$R_{1:m} = \tilde{R}_{1:m}$$
$$(\tilde{Y}_{1:m} - Y_{1:m})^T W(\tilde{Y}_{1:m} - Y_{1:m}) = \left(\frac{1}{\rho_0} + \|y_0\|_W^2\right) \begin{bmatrix} b \\ 0 \end{bmatrix} \begin{bmatrix} b \\ 0 \end{bmatrix}^T$$
$$- \begin{bmatrix} A & 0 \end{bmatrix}^T (S_{1:m}^T Y_{1:m} - R_{1:m})$$
$$- (S_{1:m}^T Y_{1:m} - R_{1:m})^T \begin{bmatrix} A & 0 \end{bmatrix}$$

BFGS and L-BFGS	Aggregation	Conclusion
000000000	000000000000000	00

Computing A and b

The key equations that one needs to satisfy to compute A and b:

$$\begin{bmatrix} b \\ 0 \end{bmatrix} = -\rho_0 (S_{1:m}^T Y_{1:m} - R_{1:m})^T \tau$$
$$R_{1:m} = \tilde{R}_{1:m}$$
$$(\tilde{Y}_{1:m} - Y_{1:m})^T W (\tilde{Y}_{1:m} - Y_{1:m}) = \left(\frac{1}{\rho_0} + \|y_0\|_W^2\right) \begin{bmatrix} b \\ 0 \end{bmatrix} \begin{bmatrix} b \\ 0 \end{bmatrix}^T$$
$$- \begin{bmatrix} A & 0 \end{bmatrix}^T (S_{1:m}^T Y_{1:m} - R_{1:m})$$
$$- (S_{1:m}^T Y_{1:m} - R_{1:m})^T \begin{bmatrix} A & 0 \end{bmatrix}$$

Iterative procedure to compute elements of A:

$$A = \begin{bmatrix} a_{1,1} & \cdots & a_{1,m-1} \\ a_{2,1} & \ddots & \vdots \\ \vdots & \ddots & a_{m-1,m-1} \\ a_{m,1} & \cdots & a_{m,m-1} \end{bmatrix}$$

Agg-BFGS, n = 128

Aggregated bfGs

Playing devil's advocate

"How much does all of this cost?"

- $\blacktriangleright \ \mathcal{O}(m^2n) + \mathcal{O}(m^4)$
- $\blacktriangleright (LBFGS = \mathcal{O}(4mn))$
- Hence, only reasonable for small m.
- More expensive than BFGS for m = n!

"When does $s_{k-m} = S_{k-m+1:k}\tau$ ever hold?"

- ▶ Rarely holds exactly.
- ▶ However, one finds it's often close!

 $\texttt{eigenb},\,n=50$

chainwoo, n = 1000

broydn7d, n = 1000

I deas for $m \ll n$

Rotate s_{k-m} to lie in span $\{s_{k-m+1}, \ldots, s_k\}$.

- Apply same rotation to y_{k-m} to ensure $s_{k-m}^T y_{k-m} > 0(?)$
- ▶ Use as trigger for increasing history.
- ▶ Or use accuracy measure.

Preliminary results

Outline

BFGS and L-BFGS

Aggregation

Conclusion

Summary

Closing the gap between BFGS and L-BFGS through displacement aggregation.

- ▶ If m = n, information perfectly preserved \implies L-BFGS can be superlinear!
- ▶ If m < n, Agg-BFGS(m) performance can still be better than L-BFGS(m).

Mathematical Programming https://doi.org/10.1007/s10107-021-01621-6	
FULL LENGTH PAPER	
Series A	Check for
Limited-memory BFGS with displacement aggregation	updates
Albert S. Berahas ¹ © · Frank E. Curtis ¹ © · Baoyu Zhou ¹	
Received: 13 January 2020 / Accepted: 4 January 2021	ety 2021