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Notation

xk+1 − xk =: sk : iterate displacement

∇f(xk+1)−∇f(xk) =: yk : gradient displacement

Hk : Hessian approximation

Wk : inverse Hessian approximation
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The “G” paper
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BFGS update

Minimal deviation from Wk subject to secant equation:

min
W∈Rn×n

∥W −Wk∥

s.t. W =WT , Wyk = sk

Using weighted Frobenius norm (w/ weight matrix satisfying secant equation):

Wk+1 ←
(
I −

yks
T
k

sTk yk

)T

Wk

(
I −

yks
T
k

sTk yk

)
+
sks

T
k

sTk yk

Using the Sherman-Morrison-Woodbury formula:

Hk+1 ←
(
I −

sks
T
kHk

sTkHksk

)T

Hk

(
I −

sks
T
kHk

sTkHksk

)
+
yky

T
k

sTk yk
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Geometric properties of Hessian update
Consider the matrices (which only depend on sk and Hk):

Pk :=
sks

T
kHk

sTkHksk
and Qk := I − Pk.

Both Hk-orthogonal projection matrices (i.e., idempotent and Hk-self-adjoint).

▶ Pk yields Hk-orthogonal projection onto span(sk).

▶ Qk yields Hk-orthogonal projection onto span(sk)
⊥Hk .

Hk+1 ←
(
I −

sks
T
kHk

sTkHksk

)T

Hk

(
I −

sks
T
kHk

sTkHksk

)
︸ ︷︷ ︸

rank n − 1

+
yky

T
k

sTk yk︸ ︷︷ ︸
rank 1

▶ Curvature projected out along span(sk)

▶ Curvature corrected by
yky

T
k

sT
k
yk

=

(
yky

T
k

∥yk∥22

)(
∥yk∥22

yT
k
Wk+1yk

)
(inverse Rayleigh).
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Theory of BFGS

BFGS can be superlinearly convergent, e.g., for strongly convex objectives:

Bounded deterioration

Self-correction

Dennis-Moré condition Local superlinear

▶ Broyden, Dennis, & Moré, 1973

▶ Dennis & Moré, 1974

▶ Powell, 1976

▶ Werner, 1978

▶ Ritter, 1979 & 1981

▶ Byrd & Nocedal, 1987
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Self-Correction

Theorem 1 (Self-correcting properties of BFGS)

Suppose H1 ≻ 0 and for some (r1, r2) the sequence {(sk, yk)} satisfies

r1 ≤
sTk yk

∥sk∥22
and

∥yk∥22
sTk yk

≤ r2.

Then, for any p ∈ (0, 1), there exist (λ1, λ2, λ3) ∈ R>0 × R>0 × R>0 such that, for any K ≥ 2, the
following hold for at least ⌈pK⌉ values of k ∈ [K]:

λ1 ≤
sTkHksk

∥sk∥2∥Hksk∥2
and λ2 ≤

∥Hksk∥2
∥sk∥2

≤ λ3.

Proved by monitoring changes in the generalized distance function

ψ(H) = tr(H) + log(det(H)),

which corresponding to the negative log-determinant distance generating function.
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L-BFGS

The algorithm generates {(sk, yk)}, and BFGS generates {Wk}, where for all k ∈ N one sets

Wk+1 ←
(
I −

yks
T
k

sTk yk

)T

Wk

(
I −

yks
T
k

sTk yk

)
+
sks

T
k

sTk yk

In iteration k ∈ N, L-BFGS uses only {(sj , yj}kj=k−m, and “applies” the update m times.

▶ Notably, the superlinear convergences guarantees of BFGS are lost. . .
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Motivating questions

▶ What lies between L-BFGS (linear) and BFGS (superlinear)?

▶ ... can increase m, but do we need m→∞ to achieve superlinearity?

▶ Does L-BFGS(n) behave equivalently to BFGS?

▶ No, but can we aggregate information?

▶ ... so Agg-BFGS(m) ≡ BFGS (with m ≤ n)?
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Is L-BFGS(n) ≡ BFGS?
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How long does information from early pairs linger?
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BFGS vs. L-BFGS vs. Agg-BFGS

BFGS: (s0, y0), (s1, y1), . . . , (sk, yk)︸ ︷︷ ︸
“stored”

L-BFGS:

Agg-BFGS:
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BFGS vs. L-BFGS vs. Agg-BFGS

BFGS: (s0, y0), (s1, y1), . . . , (sk, yk), (sk+1, yk+1)︸ ︷︷ ︸
“stored”

L-BFGS: (s1, y1), . . . , (sk, yk), (sk+1, yk+1)︸ ︷︷ ︸
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Parallel consecutive iterate displacements

BFGS(W,S1:m, Y1:m) : BFGS matrix with initial W ≻ 0 and pairs in

S1:m :
[
s1 · · · sm

]
Y1:m :

[
y1 · · · ym

]
where ρ :

[
1/(sT1 y1) · · · 1/(sTmym)

]T
> 0

Theorem 2

Suppose sj = τsj+1 for some j ∈ {1, . . . ,m− 1} and τ ∈ R. Then, with

S̃ =
[
s1 · · · sj−1 sj+1 · · · sm

]
and Ỹ =

[
y1 · · · yj−1 yj+1 · · · ym

]
,

yields BFGS(W,S, Y ) = BFGS(W, S̃, Ỹ ) for any W ≻ 0.
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General case

From the compact form of BFGS updates, one should consider:

Ỹ1:m = Y1:m +W−1S1:m

[
A 0

]
+ y0

[
b
0

]T
(⋆)

Theorem 3

Suppose

▶ W ≻ 0,

▶ S1:m has linearly independent columns,

▶ s0 = S1:mτ for some τ ∈ Rm.

Then, there exists A ∈ Rm×(m−1) and b ∈ Rm−1 such that (⋆) yields

BFGS(W,S0:m, Y0:m) = BFGS(W,S1:m, Ỹ1:m).
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Computing A and b

The compact form involves the matrix:

R1:m =

s
T
1 y1 · · · sT1 ym

. . .
...

sTmym


The key equations that one needs to satisfy to compute A and b:[

b
0

]
= −ρ0(ST

1:mY1:m −R1:m)T τ

R1:m = R̃1:m

(Ỹ1:m − Y1:m)TW (Ỹ1:m − Y1:m) =

(
1

ρ0
+ ∥y0∥2W

)[
b
0

] [
b
0

]T
−
[
A 0

]T
(ST

1:mY1:m −R1:m)

− (ST
1:mY1:m −R1:m)T

[
A 0

]
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Computing A and b
The key equations that one needs to satisfy to compute A and b:[

b
0

]
= −ρ0(ST

1:mY1:m −R1:m)T τ

R1:m = R̃1:m

(Ỹ1:m − Y1:m)TW (Ỹ1:m − Y1:m) =

(
1

ρ0
+ ∥y0∥2W

)[
b
0

] [
b
0

]T
−
[
A 0

]T
(ST

1:mY1:m −R1:m)

−(ST
1:mY1:m −R1:m)T

[
A 0

]
Iterative procedure to compute elements of A:

A =


a1,1 · · · a1,m−1

a2,1
. . .

...
...

. . . am−1,m−1

am,1 · · · am,m−1


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Agg-BFGS, n = 128
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Playing devil’s advocate

“How much does all of this cost?”

▶ O(m2n) +O(m4)

▶ (LBFGS = O(4mn))
▶ Hence, only reasonable for small m.

▶ More expensive than BFGS for m = n!

“When does sk−m = Sk−m+1:kτ ever hold?”

▶ Rarely holds exactly.

▶ However, one finds it’s often close!
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eigenb, n = 50

m = 10 m = 20
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chainwoo, n = 1000

m = 10 m = 20
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broydn7d, n = 1000

m = 10 m = 20

Aggregated bfGs 26 of 30



BFGS and L-BFGS Aggregation Conclusion

Ideas for m ≪ n

Rotate sk−m to lie in span{sk−m+1, . . . , sk}.
▶ Apply same rotation to yk−m to ensure sTk−myk−m > 0(?)

▶ Use as trigger for increasing history.

▶ Or use accuracy measure.
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Preliminary results

n ∈ {2, . . . , 20}, m = 10
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Summary

Closing the gap between BFGS and L-BFGS through displacement aggregation.

▶ If m = n, information perfectly preserved =⇒ L-BFGS can be superlinear!

▶ If m < n, Agg-BFGS(m) performance can still be better than L-BFGS(m).
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