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Notation

Tpy1 — T =: S : iterate displacement
Vf(zgpt1) — Vf(xg) =: yi : gradient displacement
Hj, : Hessian approximation

Wy, @ inverse Hessian approximation
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The “G” paper

A Family of Variable-Metric Methods Derived
by Variational Means

By Donald Goldfarb

Abstract. A new rank-two variable-metric method is derived using Greenstadt’s varia-
tional approach [Math. Comp., this issue]. Like the Davidon-Fletcher-Powell (DFP)
variable-metric method, the new method preserves the positive-definiteness of the ap-
proximating matrix. Together with Greenstadt’s method, the new method gives rise to a
one-parameter family of variable-metric methods that includes the DFP and rank-one
methods as special cases. It is equivalent to Broyden’s one-parameter family [Math.
Comp., v. 21, 1967, pp. 368-381]. Choices for the inverse of the weighting matrix in the
variational approach are given that lead to the derivation of the DFP and rank-one
methods directly.
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BFGS update

Minimal deviation from Wy subject to secant equation:

min | — Wy ||
WeRnXn

s.t. W = WT, Wy = sg
Using weighted Frobenius norm (w/ weight matrix satisfying secant equation):

T
T T T
YkS YkS SkS
Wit1 < (1 — £ Wi | I- 52 )+ 2
Sk Yk Sk Yk Sk Yk

Using the Sherman-Morrison-Woodbury formula:

T T T T

Sk S Hk Sk S Hk YrY

S Tk Hy (- Tk +Tk
sj, Hysg s; Hisg i Yk
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Geometric properties of Hessian update
Consider the matrices (which only depend on s and Hy):
T
sksi H
Pyi= bk and Qpi=1-Py.

i, Hisk

Both Hjp-orthogonal projection matrices (i.e., idempotent and Hy-self-adjoint).
» Py yields H-orthogonal projection onto span(sg).

> Qy yields Hy-orthogonal projection onto span(s k)J‘H k.

T r T T

spst Hp sgsy Hy, YrY

Hppr « (1 — 5= ) Hy (1 — ) 4 =7k
sj. Hisk Si; Yk

——r

rank n — 1 rank 1

» Curvature projected out along span(sg)

YrYL YRyl llysll3 ; ;
» Curvature corrected by =% = > - (inverse Rayleigh).
Sk Yk Iy I3 Yie Wk+1Vk
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Theory of BFGS

BFGS can be superlinearly convergent, e.g., for strongly convex objectives:

| Bounded deterioration |

Seifcomection]

Broyden, Dennis, & Moré, 1973
Dennis & Moré, 1974

Powell, 1976

Werner, 1978

Ritter, 1979 & 1981

Byrd & Nocedal, 1987

| Dennis-Moré condition | —>| Local superlinear

vVvyVvyVvVvyyvyy
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Self-Correction

Theorem 1 (Self-correcting properties of BFGS)

Suppose Hi = 0 and for some (r1,72) the sequence {(sk,yr)} satisfies

T 2
S

< kyk2 IIkallz <
lls I3 SL Uk

Then, for any p € (0,1), there exist (A1,A2,A3) € Ry g x R g X Ry such that, for any K > 2, the
following hold for at least [pK| values of k € [K]:

sfHksk

. |1 Heskll2
= lskll2l Heskll2

and A2 <
Iskl2

< )A3

Proved by monitoring changes in the generalized distance function
Y(H) = tr(H) + log(det(H)),
which corresponding to the negative log-determinant distance generating function.
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L-BFGS

The algorithm generates {(sk,yr)}, and BFGS generates {Wy}, where for all k € N one sets

T\ 7T T T

Yk s Yk s SkS
Wk+1<— I—T_k Wk; I— Tk -‘r-T—k
Sk Yk Sk Yk Sk Yk

In iteration k € N, L-BFGS uses only {(s;,y;}* and “applies” the update m times.

j=k—m>

» Notably, the superlinear convergences guarantees of BFGS are lost...
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Motivating questions

What lies between L-BFGS (linear) and BFGS (superlinear)?

. can increase m, but do we need m — oo to achieve superlinearity?
Does L-BFGS(n) behave equivalently to BFGS?
No, but can we aggregate information?

. so Agg-BFGS(m) = BFGS (with m < n)?

vVvyVYyVvyy
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Is L-BFGS(n) = BFGS?

Relative Error

107% -

10710_ (-

p

10 12 ) —

Lot -

-16 _g8

10w T T T T T T

5 10 15 20 25 30 35

Iterations
:
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How long does information from early pairs linger?

4 | | | | |

—8—BFGS (k-1)
—8—BFGS (k-2) | [
—8—BFGS (k-3)
—8—BFGS (k-5) | [
—5-BFGS (k-10)
—8—BFGS (k-15) |
—8—BFGS (k-20)

Relative Error
s

0 5 10 15 20 25 30 35

Iterations
:
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BFGS vs. L-BFGS vs. Agg-BFGS

BFGS:  (s0,%0),(51,91),-- -, (Sk, Uk)

“stored”

L-BFGS:

Agg-BFGS:
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BFGS vs. L-BFGS vs. Agg-BFGS

BFGS:  (s0,%0), (51,91)s-- -, (S Uk), (Skt1, Yk+1)

“stored”

L-BFGS:

Agg-BFGS:
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: :

BFGS vs. L-BFGS vs. Agg-BFGS

BFGS:  (s0,%0), (51,91)s-- -, (S Uk), (Skt1, Yk+1)

“stored”

L-BFGS: (307y0)7(517y1)7"'7(Sk7yk)

stored

Agg-BFGS:
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: :

BFGS vs. L-BFGS vs. Agg-BFGS

BFGS:  (s0,%0), (51,91)s-- -, (S Uk), (Skt1, Yk+1)

“stored”

L-BFGS:  (s0,%0), (51,41),- -5 (8k, Uk)s (Sk 1, Yrt1)
——

lost stored

Agg-BFGS:
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: :

BFGS vs. L-BFGS vs. Agg-BFGS

BFGS:  (s0,%0), (51,91)s-- -, (S Uk), (Skt1, Yk+1)

“stored”
L-BFGS: (51,915, (Sky Yk ), (Sk+1, Yrt1)
stored
Agg-BFGS:
; ;
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BFGS vs. L-BFGS vs. Agg-BFGS

BFGS:  (s0,40), (51,91),- -+, (S Yk)s (Skt1, Yk41)

“stored”
L-BFGS: (51,915, (Sky Yk ), (Sk+1, Yrt1)
stored
Age-BFGS:  (s0,%0), (51, 41), - -5 (Sk Yk)
stored
; ;
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BFGS vs. L-BFGS vs. Agg-BFGS

BFGS:  (s0,40), (51,91),- -+, (S Yk)s (Skt1, Yk41)

“stored”

L-BFGS: (51,91)5 -+ (Sk> Yk )» (Sky15 Yry1)

stored

Agg-BFGS:  (50,90), (51,91), - (Sk, Uk )> (Sket 1> Ykt1)

pre-aggregation
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BFGS vs. L-BFGS vs. Agg-BFGS

BFGS:  (s0,40), (51,91),- -+, (S Yk)s (Skt1, Yk41)

“stored”
L-BFGS: (51,915, (Sky Yk ), (Sk+1, Yrt1)
stored
Agg-BFGS: (s1,91),- -, (Sk, k) (St 15 et 1)
aggregated
; ;
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Parallel consecutive iterate displacements

BFGS(W, St:m, Yiim) :
Stim :
Yim :

where p :

Theorem 2

Suppose sj = Ts;11 for some j € {1,...,m — 1} and 7 € R. Then, with

< Uy
(It

and

yields BFGS(W, S,Y) = BFGS(W, S,

[y1

Y) for any W > 0.

BFGS matrix with initial W > 0 and pairs in

[0 - sm]
[yl T ym]
[1/(s1w1) 1/(sTym)]" >0

8j—1  Sj+1

Yj—1  Yj+1 Ym] s
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General case

From the compact form of BFGS updates, one should consider:

- B Sk
Yl:m = Yl:m + W 1Sl:m [A 0] + Yo [O] (*)

Theorem 3
Suppose
> W >0,
» Si.m has linearly independent columns,
» so = S1.mT for some T € R™.
Then, there exists A € R™*(m=1) and b € R™~1 such that (%) yields

BFGS(W, So:m, Yo:m) = BFGS(W, S1.m, ?l:m)«

| |
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Computing A and b

The compact form involves the matrix:

Ty o Ty
Rl:m = .
shym

The key equations that one needs to satisfy to compute A and b:
b
|:0:| = _pO(S%—;‘mYI:m - Rl:m)TT
Ri:m = Rl:m
~ S 1 5\ [o] 61"
(lem - Yl:m) W(lem - Yl:m) =|(—+ ”yO”W ol lo

PO
- [A O]T (S{mylm - Rl:m)

— (ST Y1iim — Rim)T [A 0]
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Computing A and b
The key equations that one needs to satisfy to compute A and b:
b
|:0:| = _pO(S,iT;‘mYI:m - Rl:m)TT
Rl:m - Rl:m
i - 1 5\ o] [6]"
(lem - Yl:m) W(lem - Yl:m) =|—+ “yO”W ol |o
0
- [A O]T (Sleylm - Rl:m)
~(STon Y1im — Rum) T [A 0]
Tterative procedure to compute elements of A:
a1 v al,m—1
A= | @21

Am—1,m—1
Am,1 o Am,m—1
: :
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Agg-BFGS, n = 128

Relative Error

10710

-12

o

1g718

1078 T T + T
1 2 3 4 H [ ] s
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Playing devil’s advocate

“How much does all of this cost?”
> O(m?n) + O(m?)
> (LBFGS = O(4mn))
> Hence, only reasonable for small m.
» More expensive than BFGS for m = n!
“When does s;_y, = Sk—m+1:67 ever hold?”
» Rarely holds exactly.

» However, one finds it’s often close!
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eigenb, n = 50

. . T WTT v
09 09
o8 4 o8 1
07 07
05 1 05 1
05 1 05 ]
04 , 04 1
o3l 1 o3l 1
02f B 02l ]
o1l 1 o1l 1
0 . - . . - 0 . - . . -
o 100 200 200 400 500 00 o 100 200 200 400 500 00
m = 10 m = 20
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chainwoo, n = 1000

. .

09 09

osf 4 osf 1

07 07

05 1 os| 1

osf 1 osf ]

04l i 04l 1

o3l 1 o3l 1

02f B 02l ]

o1l 1 o1l 1

0 - - . . - 0 - - . . -
o 50 100 150 200 250 200 o 50 100 150 200 250 200
m = 10 m = 20
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broydn7d, n = 1000

09

08
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06

05

04

03

02

04
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Ideas for m < n

Rotate si_q, to lie in span{sg_m+y1,..., Sk}
» Apply same rotation to yx_,, to ensure s}{_myk_m > 0(7?7)
> Use as trigger for increasing history.

» Or use accuracy measure.
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Preliminary results

0.9 ]
0.8 1
0.7 7
=06 1
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005 1
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——LBFGS-10
0.1r ~——— AggBFGS-10 | -
—— AggBFGS-Inf
0 |
10° 10’
n € {2,...,20}, m =10
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Summary

Closing the gap between BFGS and L-BFGS through displacement aggregation.
» If m = n, information perfectly preserved —> L-BFGS can be superlinear!
> If m < n, Agg-BFGS(m) performance can still be better than L-BFGS(m).
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