Aggregated bfGs

Frank E. Curtis, Lehigh University

joint work with

Albert S. Berahas, University of Michigan Baoyu Zhou, Arizona State University

presented at

Donald Goldfarb Celebration Workshop

November 8, 2024

To Don!

BFGS

To Don!

L- BFGS

Outline

[BFGS and L-BFGS](#page-4-0)

[Aggregation](#page-17-0)

[Conclusion](#page-40-0)

Outline

[BFGS and L-BFGS](#page-4-0)

[Aggregation](#page-17-0)

[Conclusion](#page-40-0)

[Aggregated bfGs](#page-0-0) 4 of 30

Notation

 $x_{k+1} - x_k =: s_k :$ iterate displacement $\nabla f(x_{k+1}) - \nabla f(x_k) =: y_k :$ gradient displacement H_k : Hessian approximation W_k : inverse Hessian approximation

The "G" paper

A Family of Variable-Metric Methods Derived by Variational Means

By Donald Goldfarb

Abstract. A new rank-two variable-metric method is derived using Greenstadt's variational approach $(Math, Comp., this is:$ Like the Davidon-Fletcher-Powell (DFP) variable-metric method, the new method preserves the positive-definiteness of the approximating matrix. Together with Greenstadt's method, the new method gives rise to a one-parameter family of variable-metric methods that includes the DFP and rank-one methods as special cases. It is equivalent to Broyden's one-parameter family $[Math]$. $Comp_1$, v. 21, 1967, pp. 368–381. Choices for the inverse of the weighting matrix in the variational approach are given that lead to the derivation of the DFP and rank-one methods directly.

BFGS update

Minimal deviation from W_k subject to secant equation:

$$
\min_{W \in \mathbb{R}^{n \times n}} \|W - W_k\|
$$

s.t. $W = W^T$, $Wy_k = s_k$

Using weighted Frobenius norm (w/ weight matrix satisfying secant equation):

$$
W_{k+1} \leftarrow \left(I - \frac{y_k s_k^T}{s_k^T y_k}\right)^T W_k \left(I - \frac{y_k s_k^T}{s_k^T y_k}\right) + \frac{s_k s_k^T}{s_k^T y_k}
$$

Using the Sherman-Morrison-Woodbury formula:

$$
H_{k+1} \leftarrow \left(I - \frac{s_ks_k^TH_k}{s_k^TH_ks_k}\right)^TH_k\left(I - \frac{s_ks_k^TH_k}{s_k^TH_ks_k}\right) + \frac{y_ky_k^T}{s_k^Ty_k}
$$

Geometric properties of Hessian update

Consider the matrices (which only depend on s_k and H_k):

$$
P_k := \frac{s_k s_k^T H_k}{s_k^T H_k s_k} \text{ and } Q_k := I - P_k.
$$

Both H_k -orthogonal projection matrices (i.e., idempotent and H_k -self-adjoint).

- \blacktriangleright P_k yields H_k -orthogonal projection onto span (s_k) .
- ▶ Q_k yields H_k -orthogonal projection onto $\text{span}(s_k)^{\perp H_k}$.

$$
H_{k+1} \leftarrow \underbrace{\left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)^T H_k \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)}_{\text{rank } n-1} + \underbrace{\frac{y_k y_k^T}{s_k^T y_k}}_{\text{rank } 1}
$$

 \triangleright Curvature projected out along span (s_k)

$$
\blacktriangleright \text{ Curvature corrected by } \frac{y_k y_k^T}{s_k^T y_k} = \left(\frac{y_k y_k^T}{\|y_k\|_2^2}\right) \left(\frac{\|y_k\|_2^2}{y_k^T W_{k+1} y_k}\right) \text{ (inverse Rayleigh)}.
$$

Theory of BFGS

BFGS can be superlinearly convergent, e.g., for strongly convex objectives:

- ▶ Broyden, Dennis, & Moré, 1973
- \blacktriangleright Dennis & Moré, 1974
- \blacktriangleright Powell, 1976
- ▶ Werner, 1978
- ▶ Ritter, 1979 & 1981
- ▶ Byrd & Nocedal, 1987

Self-Correction

Theorem 1 (Self-correcting properties of BFGS)

Suppose $H_1 \succ 0$ and for some (r_1, r_2) the sequence $\{(s_k, y_k)\}\$ satisfies

$$
r_1 \leq \frac{s_k^T y_k}{\|s_k\|_2^2}
$$
 and $\frac{\|y_k\|_2^2}{s_k^T y_k} \leq r_2$.

Then, for any $p \in (0,1)$, there exist $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0} \times \mathbb{R}_{>0}$ such that, for any $K \geq 2$, the following hold for at least $[pK]$ values of $k \in [K]$.

$$
\lambda_1 \le \frac{s_k^T H_k s_k}{\|s_k\|_2 \|H_k s_k\|_2} \quad \text{and} \quad \lambda_2 \le \frac{\|H_k s_k\|_2}{\|s_k\|_2} \le \lambda_3.
$$

Proved by monitoring changes in the generalized distance function

$$
\psi(H) = \text{tr}(H) + \log(\det(H)),
$$

which corresponding to the negative log-determinant distance generating function.

L-BFGS

The algorithm generates $\{(s_k, y_k)\}\$, and BFGS generates $\{W_k\}$, where for all $k \in \mathbb{N}$ one sets

$$
W_{k+1} \leftarrow \left(I - \frac{y_k s_k^T}{s_k^T y_k}\right)^T W_k \left(I - \frac{y_k s_k^T}{s_k^T y_k}\right) + \frac{s_k s_k^T}{s_k^T y_k}
$$

In iteration $k \in \mathbb{N}$, L-BFGS uses only $\{(s_j, y_j)\}_{j=k-m}^k$, and "applies" the update m times.

 \triangleright Notably, the superlinear convergences guarantees of BFGS are lost...

Outline

[BFGS and L-BFGS](#page-4-0)

[Aggregation](#page-17-0)

[Conclusion](#page-40-0)

[Aggregated bfGs](#page-0-0) 13 of 30

Motivating questions

- ▶ What lies between L-BFGS (linear) and BFGS (superlinear)?
- \triangleright ... can increase m, but do we need $m \to \infty$ to achieve superlinearity?
- \blacktriangleright Does L-BFGS(*n*) behave equivalently to BFGS?
- ▶ No, but can we *aggregate* information?
- ▶ ... so $Agg-BFGS(m) \equiv BFGS$ (with $m \leq n$)?

Is L-BFGS $(n) \equiv$ BFGS?

[BFGS and L-BFGS](#page-4-0) [Conclusion](#page-40-0) Conclusion and the experiment of the experiment of

How long does information from early pairs linger?

BFGS:
$$
\underbrace{(s_0, y_0), (s_1, y_1), \dots, (s_k, y_k)}_{\text{``stored''}}
$$

L-BFGS:

BFGS:
$$
(s_0, y_0), (s_1, y_1),..., (s_k, y_k), (s_{k+1}, y_{k+1})
$$

\n"stored"

L-BFGS:

BFGS:
$$
(s_0, y_0), (s_1, y_1),..., (s_k, y_k), (s_{k+1}, y_{k+1})
$$

"stored"
L-BFGS: $(s_0, y_0), (s_1, y_1),..., (s_k, y_k)$
stored

BFGS:
$$
(s_0, y_0), (s_1, y_1),..., (s_k, y_k), (s_{k+1}, y_{k+1})
$$

\n"stored"
\nL-BFGS:
\n $(s_1, y_1),..., (s_k, y_k), (s_{k+1}, y_{k+1})$
\nstored
\nstored

BFGS:
$$
\underbrace{(s_0, y_0), (s_1, y_1), \dots, (s_k, y_k), (s_{k+1}, y_{k+1})}_{\text{``stored''}}
$$
\nL-BFGS:
$$
\underbrace{(s_1, y_1), \dots, (s_k, y_k), (s_{k+1}, y_{k+1})}_{\text{stored}}
$$
\nAgg-BFGS:
$$
\underbrace{(s_0, y_0), (s_1, y_1), \dots, (s_k, y_k)}_{\text{stored}}
$$

BFGS:
$$
\underbrace{(s_0, y_0), (s_1, y_1), \ldots, (s_k, y_k), (s_{k+1}, y_{k+1})}_{\text{stored}^n}
$$

\nL-BFGS:
$$
\underbrace{(s_1, y_1), \ldots, (s_k, y_k), (s_{k+1}, y_{k+1})}_{\text{stored}}
$$

\nAgg-BFGS:
$$
\underbrace{(s_0, y_0), (s_1, y_1), \ldots, (s_k, y_k), (s_{k+1}, y_{k+1})}_{\text{pre-aggregation}}
$$

BFGS:
$$
\underbrace{(s_0, y_0), (s_1, y_1), \dots, (s_k, y_k), (s_{k+1}, y_{k+1})}_{\text{stored}^n}
$$

\nL-BFGS:
$$
\underbrace{(s_1, y_1), \dots, (s_k, y_k), (s_{k+1}, y_{k+1})}_{\text{stored}}
$$

\nAgg-BFGS:
$$
\underbrace{(s_1, \tilde{y}_1), \dots, (s_k, \tilde{y}_k), (s_{k+1}, \tilde{y}_{k+1})}_{\text{aggregateed}}
$$

Parallel consecutive iterate displacements

 $BFGS(W, S_{1:m}, Y_{1:m})$: BFGS matrix with initial $W \succ 0$ and pairs in

$$
S_{1:m}: [s_1 \cdots s_m]
$$

\n
$$
Y_{1:m}: [y_1 \cdots y_m]
$$

\nwhere $\rho: [1/(s_1^T y_1) \cdots 1/(s_m^T y_m)]^T > 0$

Theorem 2

Suppose $s_j = \tau s_{j+1}$ for some $j \in \{1, \ldots, m-1\}$ and $\tau \in \mathbb{R}$. Then, with

$$
\tilde{S} = \begin{bmatrix} s_1 & \cdots & s_{j-1} & s_{j+1} & \cdots & s_m \end{bmatrix}
$$
\nand

\n
$$
\tilde{Y} = \begin{bmatrix} y_1 & \cdots & y_{j-1} & y_{j+1} & \cdots & y_m \end{bmatrix},
$$

yields $BFGS(W, S, Y) = BFGS(W, \tilde{S}, \tilde{Y})$ for any $W \succ 0$.

General case

From the compact form of BFGS updates, one should consider:

$$
\tilde{Y}_{1:m} = Y_{1:m} + W^{-1}S_{1:m} [A \quad 0] + y_0 \begin{bmatrix} b \\ 0 \end{bmatrix}^T
$$

 (\star)

Theorem 3

Suppose

- \blacktriangleright W \succ 0.
- \blacktriangleright $S_{1:m}$ has linearly independent columns,
- \blacktriangleright s₀ = $S_{1:m}\tau$ for some $\tau \in \mathbb{R}^m$.

Then, there exists $A \in \mathbb{R}^{m \times (m-1)}$ and $b \in \mathbb{R}^{m-1}$ such that (\star) yields

 $BFGS(W, S_{0:m}, Y_{0:m}) = BFGS(W, S_{1:m}, \tilde{Y}_{1:m}).$

Computing A and b

The compact form involves the matrix:

$$
R_{1:m} = \begin{bmatrix} s_1^T y_1 & \cdots & s_1^T y_m \\ & \ddots & \vdots \\ & & s_m^T y_m \end{bmatrix}
$$

The key equations that one needs to satisfy to compute A and b :

$$
\begin{bmatrix} b \\ 0 \end{bmatrix} = -\rho_0 (S_{1:m}^T Y_{1:m} - R_{1:m})^T \tau
$$

$$
R_{1:m} = \tilde{R}_{1:m}
$$

$$
(\tilde{Y}_{1:m} - Y_{1:m})^T W (\tilde{Y}_{1:m} - Y_{1:m}) = \left(\frac{1}{\rho_0} + ||y_0||_W^2\right) \begin{bmatrix} b \\ 0 \end{bmatrix} \begin{bmatrix} b \\ 0 \end{bmatrix}^T
$$

$$
- \begin{bmatrix} A & 0 \end{bmatrix}^T (S_{1:m}^T Y_{1:m} - R_{1:m})
$$

$$
- (S_{1:m}^T Y_{1:m} - R_{1:m})^T \begin{bmatrix} A & 0 \end{bmatrix}
$$

Computing A and b

The key equations that one needs to satisfy to compute A and b :

$$
\begin{bmatrix} b \\ 0 \end{bmatrix} = -\rho_0 (S_{1:m}^T Y_{1:m} - R_{1:m})^T \tau
$$

$$
R_{1:m} = \tilde{R}_{1:m}
$$

$$
(\tilde{Y}_{1:m} - Y_{1:m})^T W (\tilde{Y}_{1:m} - Y_{1:m}) = \left(\frac{1}{\rho_0} + ||y_0||_W^2\right) \begin{bmatrix} b \\ 0 \end{bmatrix} \begin{bmatrix} b \\ 0 \end{bmatrix}^T
$$

$$
- \begin{bmatrix} A & 0 \end{bmatrix}^T (S_{1:m}^T Y_{1:m} - R_{1:m})
$$

$$
- (S_{1:m}^T Y_{1:m} - R_{1:m})^T \begin{bmatrix} A & 0 \end{bmatrix}
$$

Iterative procedure to compute elements of A:

$$
A = \begin{bmatrix} a_{1,1} & \cdots & a_{1,m-1} \\ a_{2,1} & \ddots & \vdots \\ \vdots & \ddots & a_{m-1,m-1} \\ a_{m,1} & \cdots & a_{m,m-1} \end{bmatrix}
$$

Agg-BFGS, $n = 128$

[Aggregated bfGs](#page-0-0) 22 of 30

Playing devil's advocate

"How much does all of this cost?"

- $\triangleright \mathcal{O}(m^2n) + \mathcal{O}(m^4)$
- \blacktriangleright (LBFGS = $\mathcal{O}(4mn)$)
- \blacktriangleright Hence, only reasonable for small m.
- \blacktriangleright More expensive than BFGS for $m = n!$

"When does $s_{k-m} = S_{k-m+1:k}\tau$ ever hold?"

- ▶ Rarely holds exactly.
- ▶ However, one finds it's often close!

eigenb, $n = 50$

chainwoo, $n = 1000$

broydn7d, $n = 1000$

Ideas for $m \ll n$

Rotate s_{k-m} to lie in span $\{s_{k-m+1}, \ldots, s_k\}.$

- ▶ Apply same rotation to y_{k-m} to ensure $s_{k-m}^T y_{k-m} > 0$ (?)
- ▶ Use as trigger for increasing history.
- ▶ Or use accuracy measure.

Preliminary results

Outline

[BFGS and L-BFGS](#page-4-0)

[Aggregation](#page-17-0)

[Conclusion](#page-40-0)

Closing the gap between BFGS and L-BFGS through displacement aggregation.

- ▶ If $m = n$, information perfectly preserved \implies L-BFGS can be superlinear!
- If $m < n$, Agg-BFGS (m) performance can still be better than L-BFGS (m) .

Mathematical Programming https://doi.org/10.1007/s10107-021-01621-6

