Stochastic-Gradient-based Interior-Point Methods

Frank E. Curtis, Lehigh University

presented at

60th Annual Allerton Conference on Communication, Control, and Computing

September 26, 2024

Stochastic Bound-Constrained Setting 0000000000

Generally Constrained Setting 0000

Collaborators and references

Submitted papers:

- F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, "A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems," https://arxiv.org/abs/2304.14907, in third round of review (SIAM Journal on Optimization).
- ▶ F. E. Curtis, X. Jiang, and Q. Wang, "Single-Loop Deterministic and Stochastic Interior-Point Algorithms for Nonlinearly Constrained Optimization," https://arxiv.org/abs/2408.16186, in first round of review (Mathematical Programming, Series B).

Outline

Single-Loop Interior-Point (SLIP) Method

Stochastic Bound-Constrained Setting

Generally Constrained Setting

Conclusion

Outline

Single-Loop Interior-Point (SLIP) Method

Stochastic Bound-Constrained Setting

Generally Constrained Setting

Conclusion

Motivation

Interior-point methods are the workhorse for deterministic nonlinearly constrained optimization.

▶ Ipopt, Knitro, LOQO, etc.

Before our work, there were no stochastic interior-point methods with convergence guarantees.^{\dagger}

Why not?

- Stochastic algorithms for constrained optimization are not widely studied
- \blacktriangleright . . . except for projection methods, manifold-based methods, and conditional gradient methods.
- ▶ Stochastic-gradient-based algorithms require gradients to be bounded and Lipschitz continuous
- ▶ ... but barrier functions (e.g., logarithmic barrier) have neither property.

In our first paper and this talk, we focus on the bound-constrained case.

 \blacktriangleright I will end with the additional discussion about the generally constrained case.

 $^{^\}dagger \mathrm{An}$ idea was proposed, but there was a flaw in the analysis.

Bound-constrained setting

Given $f : \mathbb{R}^n \to \mathbb{R}$ and $(l, u) \in \mathbb{R}^n \times \mathbb{R}^n$ with l < u, consider

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $l \le x \le u$

If x is a minimizer, then for some (y, z) one has

$$\nabla f(x) - y + z = 0, \quad 0 \le (x - l) \perp y \ge 0, \quad 0 \le (u - x) \perp z \ge 0.$$

(We can handle infinite bounds, but in this talk consider finite bounds for simplicity....)

Textbook algorithm

For all $\mu \in \mathbb{R}_{>0}$, consider the barrier-augmented function

$$\phi(x,\mu) = f(x) - \mu \sum_{i=1}^{n} \log(x_i - l_i) - \mu \sum_{i=1}^{n} \log(u_i - x_i).$$

Algorithm IPM : Interior-point method (textbook version)

- 1: choose an initial point $x_1 \in (l, u)$ and barrier parameter $\mu_0 \in \mathbb{R}_{>0}$
- 2: for all $k \in \{1, 2, ...\}$ do
- 3: if $\|\nabla_x \phi(x_k, \mu_{k-1})\|_2 \le \theta \mu_{k-1}$ then set $\mu_k \le \mu_{k-1}$ else set $\mu_k \leftarrow \mu_{k-1}$
- 4: compute descent direction d_k (e.g., $-\nabla \phi(x_k, \mu_k)$)
- 5: set $\alpha_{k,\max} \in (0,1]$ by fraction-to-the-boundary rule to ensure

 $x_k + \alpha_{k,\max}d_k - l \ge \epsilon(x_k - l)$ and $u - (x_k + \alpha_{k,\max}d_k) \ge \epsilon(u - x_k)$

6: set $\alpha_k \in (0, \alpha_{k, \max}]$ to ensure sufficient decrease $\phi(x_{k+1}, \mu_k) \ll \phi(x_k, \mu_k)$ 7: end for

Note: Essentially a nested-loop algorithm with inner loop having fixed μ

Major challenges for the stochastic setting

Stationarity test:

- Computing $\|\nabla_x \phi(x_k, \mu_{k-1})\|_2$ is intractable
- ▶ Could estimate it using a stochastic gradient, but then a probabilistic guarantee, at best

Fraction-to-the-boundary rule:

- Tying fraction to current iterate x_k leads to issues
- ▶ ... stochastic gradients could push iterate sequence to boundary too quickly

Unbounded gradients and lack of Lipschitz continuity:

Our approach

Our approach is based on two coupled ideas:

- ▶ prescribed decreasing barrier parameter sequence $\{\mu_k\} \searrow 0$ (single-loop algorithm!)
- ▶ prescribed $\{\theta_k\} \searrow 0$ and enforcement of

$$x_{k+1} \in \mathcal{N}_{[l,u]}(\theta_k) := \{ x \in \mathbb{R}^n : l + \theta_k \le x \le u - \theta_k \}$$

"Wait! Is it worthwhile to have an algorithm like this?!"

Our experiments say yes!

Deterministic setting

Relative performance of SLIP vs. PGM, deterministic setting, training logistic regression (left) and neural network models with one hidden layer with cross-entropy loss (right).

Proposed algorithm

Algorithm SLIP : Single-loop interior-point method

- 1: choose an initial point $x_1 \in \mathcal{N}_{[l,u]}(\theta_0), \{\mu_k\} \searrow 0, \{\theta_k\} \searrow 0$
- 2: for all $k \in \{1, 2, ...\}$ do
- 3: compute descent direction d_k (e.g., estimating $-\nabla \phi(x_k, \mu_k)$)
- 4: set

$$\alpha_k \leftarrow \frac{1}{L + 2\mu_k \theta_k^{-2}}$$

5: set $\gamma_k \in (0, 1]$ to ensure

$$x_{k+1} \leftarrow x_k + \gamma_k \alpha_k d_k \in \mathcal{N}_{[l,u]}(\theta_k)$$

6: **end for**

Note: Our paper considers a more general framework; this is a simplified instance

Key observation

Our first key observation is that the algorithm essentially acts equivalently to minimize

$$\phi(x,\mu) = f(x) - \mu \sum_{i=1}^{n} \log(x_i - l_i) - \mu \sum_{i=1}^{n} \log(u_i - x_i)$$

and

$$\tilde{\phi}(x,\mu) = f(x) - \mu \sum_{i=1}^{n} \log\left(\frac{x_i - l_i}{\chi}\right) - \mu \sum_{i=1}^{n} \log\left(\frac{u_i - x_i}{\chi}\right),$$

where χ is sufficiently large such that $\frac{x_i - l_i}{\chi} \in [0, 1]$ and $\frac{u_i - x_i}{\chi} \in [0, 1]$ for all $i \in [n]$.

The latter is simply a shifted form of the other.

- ▶ They have the same gradients! $\nabla_x \phi(x, \mu) = \nabla_x \tilde{\phi}(x, \mu)$
- For the latter, $\bar{\mu} < \mu$ implies that $\tilde{\phi}(x, \bar{\mu}) < \tilde{\phi}(x, \mu)$.

The algorithm uses ϕ , but our analysis can focus on monotonically decreasing $\{\tilde{\phi}(x_k, \mu_k)\}$.

Critical lemmas, deterministic setting

Lemma

For all
$$k \in \mathbb{N}$$
, one finds for $L_k := L + 2\mu_k \theta_k^{-2}$ that

$$\begin{split} \tilde{\phi}(x_{k+1},\mu_k) &\leq \tilde{\phi}(x_k,\mu_k) + \nabla_x \tilde{\phi}(x_k,\mu_k)^T (x_{k+1} - x_k) + \frac{1}{2} L_k \|x_{k+1} - x_k\|_2^2, \\ so \; \{\alpha_k\} &= \{L_k^{-1}\} \implies \tilde{\phi}(x_{k+1},\mu_{k+1}) \leq \tilde{\phi}(x_k,\mu_k) - \frac{1}{2} \gamma_k \alpha_k \|\nabla_x \tilde{\phi}(x_k,\mu_k)\|_2^2. \end{split}$$

Lemma

For all $k \in \mathbb{N}$, one finds that γ_k is bounded below by the minimum of 1 and

$$\alpha_k^{-1} \left(\frac{\frac{1}{2}\mu_k \Delta}{\mu_k + \frac{1}{2}\kappa_{\nabla f}\Delta} - \theta_k \right) (\kappa_{\nabla f} + \mu_k \theta_{k-1}^{-1})^{-1}.$$

Thus, with $t \in [-1,0)$, $\{\mu_k\} = \{\mu_1 k^t\}$, $\{\theta_{k-1}\} = \{\theta_0 k^t\}$, and $\{\alpha_k\} = \{L_k^{-1}\}$, one finds that

$$\sum_{k=1}^{\infty} \gamma_k lpha_k = \infty$$
 and $\{\mu_k \theta_{k-1}^{-1}\}$ is bounded.

Convergence guarantee, deterministic setting

Theorem

One finds that

$$\liminf_{k \to \infty} \|\nabla_x \phi(x_k, \mu_k)\|_2^2 = 0,$$

and, for any infinite-cardinality set $\mathcal{K} \subseteq \mathbb{N}$ such that $\{\nabla_x \phi(x_k, \mu_k)\}_{k \in \mathcal{K}} \to 0$ and $\{x_k\}_{k \in \mathcal{K}} \to \overline{x}$, the limit point \overline{x} is a KKT point (i.e., there exists \overline{y} and \overline{z} such that $(\overline{x}, \overline{y}, \overline{z})$ satisfies KKT conditions).

Why does it work?

Why does it work?

Why does it work?

Outline

Single-Loop Interior-Point (SLIP) Method

Stochastic Bound-Constrained Setting

Generally Constrained Setting

Conclusion

Stochastic setting

In the stochastic setting, the algorithm parameters need to be chosen more carefully!

- ▶ Notably, γ_k needs to be chosen based on knowledge of noise bound.
- For the deterministic setting, $\{\mu_k\} = \{\mu_1 k^t\}$ and $\{\theta_{k-1}\} = \{\theta_0 k^t\}$ for t = -1 implies

$$\{\alpha_k\} = \left\{\frac{1}{L+2\mu_k\theta_k^{-2}}\right\} = \Theta(k^t),$$

but for stochastic setting, step-size sequence {α_k} can no longer decrease at same rate as {μ_k}.
It needs to decrease more slowly than {μ_k} (although rates can be arbitrarily close).

Accounting for the error

The issue arises from the following lemma.

Lemma

For all $k \in \mathbb{N}$, one finds that

$$\begin{split} &\tilde{\phi}(X_{k+1},\mu_{k+1}) - \tilde{\phi}(X_k,\mu_k) \\ &\leq -\Gamma_k A_k \|\nabla_x \tilde{\phi}(X_k,\mu_k)\|_{H_k^{-1}}^2 + \Gamma_k A_k \nabla_x \tilde{\phi}(X_k,\mu_k)^T H_k^{-1} (\nabla_x \tilde{\phi}(X_k,\mu_k) - Q_k) \\ &+ \frac{1}{2} \Gamma_k^2 A_k^2 \lambda_{k,\min}^{-1} \ell_{\nabla f,\mathcal{B},k} \|Q_k\|_{H_k^{-1}}^2. \end{split}$$

Using $\{\mu_k\} = \{\mu_1 k^{-1}\}$ and $\{\theta_{k-1}\} = \{\theta_0 k^{-1}\}$, so $\{\alpha_k\} = \Theta(k^t)$, leaves the final term uncontrolled!

Parameter rule

Given prescribed $(t_{\mu}, t_{\theta}, t_{\alpha}) \in (-\infty, -\frac{1}{2}) \times (-\infty, -\frac{1}{2}) \times (-\infty, 0)$ such that $t_{\mu} = t_{\theta}, t_{\mu} + t_{\alpha} \in [-1, 0)$, and $t_{\mu} + 2t_{\alpha} \in (-\infty, -1)$ along with prescribed $\alpha_{\text{buff}} \in \mathbb{R}_{\geq 0}$, $\{\alpha_{k,\text{buff}}\} \subset \mathbb{R}_{\geq 0}$, $\gamma_{\text{buff}} \in \mathbb{R}_{\geq 0}$, and $\{\gamma_{k,\text{buff}}\} \subset \mathbb{R}_{\geq 0}$ such that $\alpha_{k,\text{buff}} \leq \alpha_{\text{buff}} k^{2t_{\mu}}$ and $\gamma_{k,\text{buff}} \leq \gamma_{\text{buff}} k^{t_{\mu}}$ for all $k \in \mathbb{N}$, the algorithm employs

$$\alpha_{k,\min} := \frac{\lambda_{k,\min}k^{t_{\alpha}}}{\ell_{\nabla f,\mathcal{B}} + 2\mu_{k}\theta_{k}^{-2}}, \qquad \gamma_{k,\min} := \min\left\{1, \frac{\lambda_{k,\min}\left(\frac{\frac{1}{2}\mu_{k}\Delta}{\mu_{k} + \frac{1}{2}(\kappa_{\nabla f,\mathcal{B},\infty} + \sigma_{\infty})\Delta} - \theta_{k}\right)}{\alpha_{k,\max}(\kappa_{\nabla f,\mathcal{B},\infty} + \sigma_{\infty} + \mu_{k}\theta_{k-1}^{-1})}\right\},$$

 $\alpha_{k,\max} := \alpha_{k,\min} + \alpha_{k,\text{buff}}, \quad \text{and} \quad \gamma_{k,\max} := \min\{1, \gamma_{k,\min} + \gamma_{k,\text{buff}}\}$

and makes a (run-and-iterate-dependent) choice $\alpha_k \in \min\left\{\frac{\lambda_{k,\min}k^{t_\alpha}}{L+2\mu_k\theta_k^{-2}}, \alpha_{k,\max}\right\}$ for all $k \in \mathbb{N}$.

Acceptable rate values

Convergence guarantee, stochastic setting

Theorem

Suppose $t \in (-1, -\frac{1}{2})$ and $t_{\alpha} \in (-\infty, 0)$ have

 $t + t_{\alpha} \in [-1, 0)$ and $t + 2t_{\alpha} \in (-\infty, -1)$

and for some $\sigma \in \mathbb{R}_{>0}$ one has for all $k \in \mathbb{N}$ that

 $\mathbb{E}[G_k|\mathcal{F}_k] = \nabla f(X_k) \quad and \quad ||G_k - \nabla f(X_k)||_2 \le \sigma.$

Then, with $\{\mu_k\} = \{\mu_1 k^t\}, \{\theta_{k-1}\} = \{\theta_0 k^t\}, \text{ and } \{\alpha_k\} = \{L_k^{-1} k^{t_\alpha}\}, \text{ one finds that }$

 $\liminf_{k\to\infty} \|\nabla_x \phi(X_k,\mu_k)\|_2^2 = 0 \quad almost \ surely.$

Consequently, considering any realization $\{x_k\}$ of $\{X_k\}$, for any infinite-cardinality set $\mathcal{K} \subseteq \mathbb{N}$ such that $\{\nabla_x \phi(x_k, \mu_k)\}_{k \in \mathcal{K}} \to 0$ and $\{x_k\}_{k \in \mathcal{K}} \to \overline{x}$, the limit point \overline{x} is a KKT point.

Numerical experiments

Compare SLIP with a projected stochastic gradient method (PSGM) for which

$$x_{k+1} \leftarrow \operatorname{Proj}_{[l,u]}(x_k + \alpha_k d_k).$$

Experiments involve:

- binary classification problems with LIBSVM datasets
- ▶ two classifiers:
 - ▶ logistic regression (convex) and
 - ▶ neural network with one hidden layer and cross-entropy loss (nonconvex)
- performance measure

$$\frac{f(x_{\text{end}}^{\text{SLIP}}) - f(x_{\text{end}}^{\text{PSGM}})}{\max\{f(x_{\text{end}}^{\text{SLIP}}), f(x_{\text{end}}^{\text{PSGM}}), 1\}} \in (-1, 1)$$

Deterministic setting

Relative performance of SLIP and PGM, deterministic setting, training logistic regression (left) and neural network models with one hidden layer with cross-entropy loss (right).

Stochastic setting, logistic regression

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training logistic regression models; among 43 training datasets, 26 have testing datasets.

Stochastic setting, neural network with cross-entropy loss

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models (with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.

Outline

Single-Loop Interior-Point (SLIP) Method

Stochastic Bound-Constrained Setting

Generally Constrained Setting

Conclusion

SLIP algorithm

Algorithm SLIP : Single-loop interior-point method

- 1: choose an initial point $x_1 \in \mathcal{N}_{[l,u]}(\theta_0), \{\mu_k\} \searrow 0, \{\theta_k\} \searrow 0$
- 2: for all $k \in \{1, 2, \dots\}$ do
- 3: compute descent direction d_k (e.g., estimating $-\nabla \phi(x_k, \mu_k)$)
- 4: set

$$\alpha_k \leftarrow \frac{1}{L + 2\mu_k \theta_k^{-2}}$$

5: set $\gamma_k \in (0, 1]$ to ensure

$$x_{k+1} \leftarrow x_k + \gamma_k \alpha_k d_k \in \mathcal{N}_{[l,u]}(\theta_k)$$

6: **end for**

How can this be extended for the generally constrained setting?

- ▶ This is a feasible algorithm.
- ▶ Neighborhood enforcement is the real issue! Constraint value depends nonlinearly on γ_k .

Search direction conditions

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $Ax = b$
 $c(x) \le 0$

$$\phi(x,\mu) = f(x) - \mu \sum_{i=1}^{n} \log(-c_i(x))$$

Need an initial point $x_1 \in \mathbb{R}^n$ satisfying

$$Ax_1 = b$$
 and $c(x_1) < 0$,

and, with $P := I - A^T (AA^T)^{-1} A$, to ensure/assume that, for all $k \in \mathbb{N}$, one can compute d_k satisfying

$$\begin{aligned} Ad_{k} &= 0\\ \underline{\zeta} \| Pq_{k} \|_{2} \leq \| d_{k} \|_{2} \leq \overline{\zeta} \| Pq_{k} \|_{2}\\ -(Pq_{k})^{T} d_{k} \geq \zeta \| Pq_{k} \|_{2} \| d_{k} \|_{2}\\ \nabla c_{i}(x_{k})^{T} d_{k} \leq -\frac{1}{2} \overline{\eta} \| d_{k} \|_{2} \quad \text{for all} \quad i \in \{ j \in [m] : -\eta \mu_{k} < c_{i}(x_{k}) \}. \end{aligned}$$

Single-Loop Interior-Point (SLIP) Method	Stochastic Bound-Constrained Setting	Generally Constrained Setting $000 \bullet$	Conclusion 000

Main challenge

Assuming nice conditions (e.g., on the left, not on the right) and parameter choices similar to the bound-constrained case, we prove that the projected gradient of the barrier-augmented function vanishes and, if a limit point satisfies the LICQ, then the limit point is a KKT point.

Outline

Single-Loop Interior-Point (SLIP) Method

Stochastic Bound-Constrained Setting

Generally Constrained Setting

Conclusion

Summary

Presented a single-loop interior-point method for solving bound-constrained problems, with

- ▶ prescribed barrier and "neighborhood" parameter sequences,
- ▶ no need for stationarity tests, fraction-to-the-boundary rules, or line searches,
- convergence guarantees in deterministic and stochastic settings, and
- promising numerical performance!

Presented an overview of our extension to the "generally constrained" setting.

▶ There is more to be done!

Stochastic Bound-Constrained Setting 0000000000

Generally Constrained Settin 0000

Collaborators and references

Submitted papers:

- F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, "A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems," https://arxiv.org/abs/2304.14907, in third round of review (SIAM Journal on Optimization).
- ▶ F. E. Curtis, X. Jiang, and Q. Wang, "Single-Loop Deterministic and Stochastic Interior-Point Algorithms for Nonlinearly Constrained Optimization," https://arxiv.org/abs/2408.16186, in first round of review (Mathematical Programming, Series B).