Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	0000	000000	0000	000

On the Almost-Sure Convergence of the Primal Iterates and Lagrange Multipliers in a Stochastic Sequential Quadratic Optimization Method

Frank E. Curtis, Lehigh University

joint work with

Xin Jiang (Lehigh), Qi Wang (Lehigh)

presented at

Modeling and Optimization: Theory and Applications (MOPTA) 2023

August 16, 2023

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	0000	000000	0000	000

Collaborators and reference

▶ F. E. Curtis, X. Jiang, and Q. Wang, "Almost-sure convergence of iterates and multipliers in stochastic sequential quadratic optimization," https://arxiv.org/abs/2308.03687.

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	0000	000000	0000	000

Convergence of random variables

Consider a stochastic process $\{V_k\}$ and random variable V defined with respect to $(\Omega, \mathcal{F}, \mathbb{P})$

Convergence in probability: $\{V_k\} \xrightarrow{p} V$ if and only if

 $\lim_{k \to \infty} \mathbb{P}[\|V_k - V\| > \epsilon] = 0 \text{ for all } \epsilon \in \mathbb{R}_{>0}$

Almost-sure convergence: $\{V_k\} \xrightarrow{a.s.} V$ if and only if

$$\mathbb{P}\left[\lim_{k \to \infty} V_k = V\right] = 1$$

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	0000	000000	0000	000

Motivation

Convergence of Primal Iterates

Convergence of Lagrange Multipliers

Numerical Demonstration

Conclusion

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
•00000000	0000	000000	0000	000

Motivation

Convergence of Primal Iterates

Convergence of Lagrange Multipliers

Numerical Demonstration

Conclusion

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
00000000	0000	000000	0000	000

Stochastic optimization (unconstrained)

$$\min_{x \in \mathbb{R}^n} f(x)$$

where

- $\blacktriangleright \ f:\mathbb{R}^n\to\mathbb{R}$
- $f(x) = \mathbb{E}_{\iota}[F(x,\iota)]$ for all $x \in \mathbb{R}^n$
- ι has probability space $(\Omega_{\iota}, \mathcal{F}_{\iota}, \mathbb{P}_{\iota})$
- $\blacktriangleright \ F: \mathbb{R}^n \times \Omega_\iota \to \mathbb{R}$
- ▶ $\mathbb{E}_{\iota}[\cdot]$ denotes expectation w.r.t. \mathbb{P}_{ι}

e.g., $f(x) := \ell(\phi(x, a), b)$ in deep learning:

Stochastic approximation/gradient method

Robbins and Monro (1951) shows that for

- solving an equation with a unique root (and other assumptions)
- using an algorithm with unbiased derivative estimates

▶ and unsummable and square-summable step sizes (e.g., $\alpha = O(1/k)$) one can show

$$\lim_{k \to \infty} \mathbb{E}[(X_k - x_*)^2] = 0 \qquad \Longrightarrow \qquad \{X_k\} \xrightarrow{p} x_*.$$

Cast into the context of minimization of (potentially nonconvex) $f : \mathbb{R}^n \to \mathbb{R}$, one can show that

 $\lim_{k \to \infty} \mathbb{E}[\|\nabla f(X_k)\|^2] = 0.$

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	0000	000000	0000	000

Almost-sure convergence

Robbins and Siegmund (1971) proves the following lemma.

Lemma RS (simplified)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\{\mathcal{F}_k\}$ with $\mathcal{F}_k \subseteq \mathcal{F}_{k+1}$ for all $k \in \mathbb{N}$ be a sequence of sub- σ -algebras of \mathcal{F} . Let $\{R_k\}, \{P_k\}, and \{Q_k\}$ be sequences of nonnegative random variables such that for all $k \in \mathbb{N}$ the tuple (R_k, P_k, Q_k) is \mathcal{F}_k -measurable. If $\sum_{k=1}^{\infty} Q_k < \infty$ and, for all $k \in \mathbb{N}$, one has

$$\mathbb{E}[R_{k+1}|\mathcal{F}_k] \le R_k - P_k + Q_k$$

then, almost-surely, $\sum_{k=1}^{\infty} P_k < \infty$ and $\lim_{k \to \infty} R_k$ exists and is finite.

Therefore, it can be shown under certain assumptions that for

- ▶ stochastic approximation (solving an equation): $\{X_k\} \xrightarrow{a.s.} x_*$
- ▶ stochastic gradient (minimization): $\{\nabla f(X_k)\} \xrightarrow{a.s.} 0$ (Bertsekas and Tsitsiklis (2000))

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	0000	000000	0000	000

Constrained stochastic optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$

where

- $f(x) = \mathbb{E}_{\iota}[F(x,\iota)]$, as before
- \blacktriangleright c is continuously differentiable
- $\blacktriangleright \nabla f$ has Lipschitz constant L
- $\triangleright \nabla c$ has Lipschitz constant Γ
- stationarity conditions:

$$\nabla f(x) + \nabla c(x)y = 0$$
$$c(x) = 0$$

Algorithm : Stochastic SQP 1: choose $x_1 \in \mathbb{R}^n, \tau \in \mathbb{R}_{>0}$

- 2: for $k \in \{1, 2, ...\}$ do
- 3: estimate gradient: $g_k \approx \nabla f(x_k)$
- 4: compute step: solve

$$\begin{bmatrix} H_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ y_k \end{bmatrix} = - \begin{bmatrix} g_k \\ c_k \end{bmatrix}$$

5: choose step size: for small $\beta_k \in \mathbb{R}_{>0}$,

1

$$\alpha_k \leftarrow \frac{\beta_k \tau}{\tau L + \Gamma}$$

6: update iterate: set $x_{k+1} \leftarrow x_k + \alpha_k d_k$ 7: end for

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	0000	000000		000

Motivation #1: Physics-informed learning (e.g., PINNs)

Photo: Karniadakis et al.

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
0000000000	0000	000000		000

Motivation #2: Fair learning

Let

and consider

- \triangleright Y be a feature vector
- \blacktriangleright A be a sensitive feature vector
- \triangleright Z be the output/label

This loss might not be fair between subgroups in the population.

- Various criteria related to fairness (e.g., demographic parity, equalized odds, equalized opportunity) leading to various measures (e.g., accuracy equality, disparate impact, measures conditioned on outcome, measures conditioned on prediction)
- ▶ For example, in binary classification, disparate impact asks for the following *constraints* to hold:

$$\mathbb{P}[\hat{Z}=z|A=1]=\mathbb{P}[\hat{Z}=z|A=0] \ \text{ for each } \ z\in\{-1,1\}$$

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
0000000€0	0000	000000	0000	000

Convergence to stationarity

Assumption

- \blacktriangleright τ is sufficiently small
- $\{\beta_k\} = \mathcal{O}(1/k)$ with β_1 sufficiently small

Theorem (Berahas, Curtis, Robinson, Zhou (2021))

$$\liminf_{k \to \infty} \mathbb{E} \left[\|\nabla f(X_k) + \nabla c(X_k)^T Y_k^{\text{true}} \|^2 + \|c(X_k)\| \right] = 0$$

This shows that over some sequence the expected stationarity measure vanishes, but

- ▶ it does not guarantee that $\{X_k\}$ converges in any sense and
- the values $\{Y_k^{\text{true}}\}$ are not realized by the algorithm, so
- it does not guarantee anything about $\{Y_k\}$

Multipliers are important for verifying stationarity, active-set identification, etc.

Motivation 00000000●	Primal Iterates 0000	Lagrange Multipliers 000000	Numerical Demonstration 0000	Conclusion 000

Preview

We are going to see conditions that guarantee behavior as seen below.

Solving a constrained logistic regression problem with the **australian** dataset from LIBSVM:

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	●000	000000	0000	000

Motivation

Convergence of Primal Iterates

Convergence of Lagrange Multipliers

Numerical Demonstration

Conclusion

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	0000	000000	0000	000

Short version

Main result: If

▶ a stationarity measure grows sufficiently away from x_*

• $\{X_k\}$ remains within a small neighborhood of x_* then

$$\{X_k\} \xrightarrow{a.s.} x_*.$$

Respectively, these are assumptions about

- ▶ the problem, similar to "local convexity" (generalized "P-L condition")
- ▶ the algorithm behavior(!)... necessary for the nonconvex setting to say anything about $\{X_k\}$

Motivation	$\begin{array}{c} \mathbf{Primal \ Iterates} \\ 00 \bullet 0 \end{array}$	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000		000000	0000	000

Merit function

Convergence of the algorithm is driven by the exact merit function

$$\phi_{\tau}(X) = \tau f(X) + \|c(X)\|$$

Reductions in a local model of ϕ_{τ} can be tied to a stationarity measure

 $\Delta q_{\tau}(X, \nabla f(X), H, D^{\text{true}}) \sim \|\nabla f(X) + \nabla c(X)Y\|^2 + \|c(X)\|$

Lemma

Suppose $\mathbb{E}[G_k|\mathcal{F}_k] = \nabla f(X_k)$ and $\mathbb{E}[\|G_k - \nabla f(X_k)|\mathcal{F}_k\|^2] \leq \sigma^2$. Lemma RS with

$$P_k := \frac{\beta_k \tau}{\tau L + \Gamma} \Delta q_\tau(X_k, \nabla f(X_k), H_k, D_k^{\text{true}}), \quad Q_k := \frac{\beta_k^2 \tau^2 \sigma^2}{2\zeta(\tau L + \Gamma)}, \quad and \quad R_k := \phi_\tau(X_k) - \tau f_{\text{inf}}$$

shows that, almost surely,

$$\begin{split} &\lim_{k\to\infty} \{\phi_{\tau}(X_k)\} \text{ exists and is finite and} \\ &\lim_{k\to\infty} \Delta q_{\tau}(X_k, \nabla f(X_k), H_k, D_k^{\text{true}}) = 0 \end{split}$$

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	000•	000000	0000	000

Almost-sure convergence of the primal iterates

If $\{X_k\}$ stays within a neighborhood of x_* almost surely, where x_* is a stationary point at which a generalization of the Polyak–Lojasiewicz condition holds, then almost-sure convergence follows:

Theorem

Suppose that there exists $x_* \in \mathcal{X}$ with $c(x_*) = 0$, $\mu \in \mathbb{R}_{>1}$, and $\epsilon \in \mathbb{R}_{>0}$ such that for all

 $x \in \mathcal{X}_{\epsilon, x_*} := \{ x \in \mathcal{X} : \|x - x_*\|_2 \le \epsilon \}$

one finds that

$$\phi_{\tau}(x) - \phi_{\tau}(x_{*}) \begin{cases} = 0 & \text{if } x = x_{*} \\ \in (0, \mu(\tau \| Z(x)^{T} \nabla f(x) \|_{2}^{2} + \| c(x) \|_{2})] & \text{otherwise,} \end{cases}$$

where for all $x \in \mathcal{X}_{\epsilon,x_*}$ one defines $Z(x) \in \mathbb{R}^{n \times (n-m)}$ as some orthonormal matrix whose columns form a basis for the null space of $\nabla c(x)^T$. Then, if $\limsup_{k \to \infty} \{ \|X_k - x_*\|_2 \} \leq \epsilon$ almost surely, it follows that

$$\{\phi_{\tau}(X_k)\} \xrightarrow{a.s.} \phi_{\tau}(x_*), \quad \{X_k\} \xrightarrow{a.s.} x_*, \quad and \quad \left\{ \begin{bmatrix} \nabla f(X_k) + \nabla c(X_k)Y_k^{\text{true}} \\ c(X_k) \end{bmatrix} \right\} \xrightarrow{a.s.} 0.$$

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	0000	•00000	0000	000

Motivation

Convergence of Primal Iterates

Convergence of Lagrange Multipliers

Numerical Demonstration

Conclusion

 Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	0000	000000	0000	000

Lagrange multipliers as a (noisy) mapping of the primal iterates

In a standard manner, it can be shown that

$$Y_k = M_k (H_k (\nabla c(X_k)^{\dagger})^T c(X_k) - G_k) \in \mathbb{R}^m,$$

where M_k is a product of a pseudoinverse of the derivative of c at X_k and a projection matrix:

$$M_k = \nabla c(X_k)^{\dagger} (I - H_k Z_k (Z_k^T H_k Z_k)^{-1} Z_k^T) \in \mathbb{R}^{m \times n}$$

If $\{X_k\} \xrightarrow{a.s.} x_*$, then one would expect

- ▶ $\{Y_k^{\text{true}}\} \xrightarrow{a.s.} y_*$ (i.e., as above with $\nabla f(X_k)$ in place of G_k)
- \triangleright {Y_k} noisy with error proportional to error in stochastic gradient estimators

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	0000		0000	000

Initial result

Assumption

 $\begin{array}{l} Given \ x_* \in \mathcal{X} \ as \ a \ primal \ stationary \ point, \ there \ exist \ \epsilon \in \mathbb{R}_{>0}, \ \mathcal{H} : \mathbb{R}^n \to \mathbb{S}^n, \ L_{\mathcal{H}} \in \mathbb{R}_{>0}, \\ \mathcal{M} : \mathbb{R}^n \to \mathbb{R}^{m \times n}, \ and \ L_{\mathcal{M}} \in \mathbb{R}_{>0} \ such \ that: \\ (i) \ H_k = \mathcal{H}(X_k) \ whenever \ X_k \in \mathcal{X}_{\epsilon,x_*}; \\ (ii) \ \|\mathcal{H}(x) - \mathcal{H}(\overline{x})\|_2 \leq L_{\mathcal{H}} \|x - \overline{x}\|_2 \ for \ all \ (x, \overline{x}) \in \mathcal{X}_{\epsilon,x_*} \times \mathcal{X}_{\epsilon,x_*}; \\ (iii) \ M_k = \mathcal{M}(X_k) \ whenever \ X_k \in \mathcal{X}_{\epsilon,x_*}; \ and \\ (iv) \ \|\mathcal{M}(x) - \mathcal{M}(\overline{x})\|_2 \leq L_{\mathcal{M}} \|x - \overline{x}\|_2 \ for \ all \ (x, \overline{x}) \in \mathcal{X}_{\epsilon,x_*} \times \mathcal{X}_{\epsilon,x_*}. \end{array}$

Theorem

Suppose (x_*, y_*) is a stationary point. Then, for any $k \in \mathbb{N}$, one finds $||X_k - x_*||_2 \leq \epsilon$ implies

$$||Y_k - y_*||_2 \le \kappa_y ||X_k - x_*||_2 + r^{-1} ||\nabla f(X_k) - G_k||_2$$

and $||Y_k^{\text{true}} - y_*||_2 \le \kappa_y ||X_k - x_*||_2,$

where $\kappa_y := \kappa_H L_c r^{-2} + L r^{-1} + \kappa_{\nabla f} L_{\mathcal{M}}.$

ar

00000000 0000 00000 0000 000	Motivation Pr 000000000 00	rimal Iterates L 000 C	Lagrange Multipliers	Numerical Demonstration 0000	Conclusion 000
-------------------------------------	-------------------------------	---------------------------	----------------------	---------------------------------	-------------------

$\{Y_k\}$ has error and $\{Y_k^{\text{true}}\}$ is not computed! Average Y_k 's?

Unfortunately, this means that

- \triangleright { Y_k } always has error
- ▶ $\{Y_k^{\text{true}}\}$ converges if $\{X_k\}$ does, but these are not realized (requires $\{\nabla f(X_k)\}$)!

Idea: Average elements of $\{Y_k\}$?

- ▶ If $X_k = x_*$ for all $k \in \mathbb{N}$, then one can leverage the classical central limit theorem
- However, since $\{X_k\}$ is a random process, multipliers are not IID estimators of y_*

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	0000		0000	000

Martingale central limit theorem

Assumption

Suppose that $\{M_k\}$ and $\{\Delta_k\} = \{\nabla f(X_k) - G_k\}$ satisfy

$$\begin{split} &\frac{1}{k} \mathbb{E}[\|M_i \Delta_i\|_2^2] < \infty \text{ for all } (k,i) \in \mathbb{N} \times [k], \\ &\left\{ \frac{1}{k} \sum_{i=1}^k \mathbb{E} \left[\|M_i \Delta_i\|_2^2 \mathbf{1}_{\left\{ \frac{\|M_i \Delta_i\|_2}{\sqrt{k}} > \delta \right\}} \middle| \mathcal{F}_i \right] \right\} \xrightarrow{p} 0 \text{ for all } \delta \in \mathbb{R}_{>0}, \\ &\left\{ \frac{1}{k} \sum_{i=1}^k \mathbb{E}[M_i \Delta_i \Delta_i^T M_i^T | \mathcal{F}_i] \right\} \xrightarrow{p} \Sigma \text{ for some } \Sigma \in \mathbb{S}^n, \text{ and} \\ &\sup_{k \in \mathbb{N}} \mathbb{E} \left[\left\| \sum_{i=1}^k \frac{1}{\sqrt{k}} M_i \Delta_i \right\|_2^\Theta \right] < \infty \text{ for some } \Theta \in \mathbb{R}_{>1}. \end{split}$$

	Motivation 1 000000000	Primal Iterates 0000	Lagrange Multipliers	Numerical Demonstration 0000	Conclusion 000
--	---------------------------	-------------------------	----------------------	---------------------------------	-------------------

True and average Lagrange multiplier convergence

Theorem

If the iterate sequence converges almost surely to x_* , i.e., $\{X_k\} \xrightarrow{a.s.} x_*$, then

 $\{Y_k^{\mathrm{true}}\} \xrightarrow{a.s.} y_* \quad and \quad \{Y_k^{\mathrm{avg}}\} \xrightarrow{a.s.} y_*.$

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration \bullet 000	Conclusion
000000000	0000	000000		000

Motivation

Convergence of Primal Iterates

Convergence of Lagrange Multipliers

Numerical Demonstration

Conclusion

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration 0000	Conclusion
000000000	0000	000000		000

Test problem

Consider constrained logistic regression of the form

$$\min_{x \in \mathbb{R}^n} \frac{1}{N} \sum_{i=1}^N \log(1 + e^{-\gamma_i d_i^T x}) \quad \text{s.t.} \quad Ax = b, \ \|x\|_2^2 = 1,$$

where

•
$$D = [d_1 \cdots d_N] \in \mathbb{R}^{n \times N}$$
 is a feature matrix

- $\gamma \in \mathbb{R}^N$ is a label vector
- $\blacktriangleright \ A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$

Consider prior sequences as well as Lagrange multiplier averages

$$Y_k^{\operatorname{avg}_{\epsilon}} := \operatorname{average} \text{ of } Y_j$$
's corresponding to X_j 's with $||X_k - X_j|| \le \epsilon$

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration 0000	Conclusion
000000000	0000	000000		000

LIBSVM datasets

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration $000 \bullet$	Conclusion
000000000	0000	000000		000

australian dataset

Motivation	Primal Iterates	Lagrange Multipliers	Numerical Demonstration	Conclusion
000000000	0000	000000	0000	•00

Motivation

Convergence of Primal Iterates

Convergence of Lagrange Multipliers

Numerical Demonstration

Conclusion

Summary

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$

where

$$\blacktriangleright f(x) = \mathbb{E}_{\iota}[F(x,\iota)]$$

 \triangleright c is continuously differentiable

For Stochastic SQP, conditions that guarantee

- ▶ almost-sure convergence of $\{X_k\}$ to x_*
- $\blacktriangleright \{ \|Y_k y_*\| \} \text{ bounded by } \{ \|G_k \nabla f(X_k)\| \}$
- almost-sure convergence of $\{Y_k^{\text{true}}\}$ to y_*
- ▶ almost-sure convergence of $\{Y_k^{\text{avg}}\}$ to y_*

Motivation 000000000	Primal Iterates 0000	Lagrange Multipliers 000000	Numerical Demonstration 0000	Conclusion 000

Collaborators and references

- A. S. Berahas, F. E. Curtis, D. P. Robinson, and B. Zhou, "Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization," SIAM Journal on Optimization, 31(2):1352–1379, 2021.
- A. S. Berahas, F. E. Curtis, M. J. O'Neill, and D. P. Robinson, "A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear Equality Constrained Optimization with Rank-Deficient Jacobians," https://arxiv.org/abs/2106.13015.
- F. E. Curtis, D. P. Robinson, and B. Zhou, "Inexact Sequential Quadratic Optimization for Minimizing a Stochastic Objective Subject to Deterministic Nonlinear Equality Constraints," https://arxiv.org/abs/2107.03512.
- F. E. Curtis, M. J. O'Neill, and D. P. Robinson, "Worst-Case Complexity of an SQP Method for Nonlinear Equality Constrained Stochastic Optimization," *Mathematical Programming* (online).
- F. E. Curtis, S. Liu, and D. P. Robinson, "Fair Machine Learning through Constrained Stochastic Optimization and an ε-Constraint Method," Optimization Letters (online).
- F. E. Curtis, D. P. Robinson, and B. Zhou, "Sequential Quadratic Optimization for Stochastic Optimization with Deterministic Nonlinear Inequality and Equality Constraints," https://arxiv.org/abs/2302.14790.
- F. E. Curtis, X. Jiang, and Q. Wang, "Almost-sure convergence of iterates and multipliers in stochastic sequential quadratic optimization," https://arxiv.org/abs/2308.03687.