
Motivation Primal Iterates Lagrange Multipliers Numerical Demonstration Conclusion

On the Almost-Sure Convergence of the Primal Iterates and Lagrange Multipliers in a
Stochastic Sequential Quadratic Optimization Method

Frank E. Curtis, Lehigh University

joint work with

Xin Jiang (Lehigh), Qi Wang (Lehigh)

presented at

Modeling and Optimization: Theory and Applications (MOPTA) 2023

August 16, 2023

Almost-Sure Convergence of Iterates and Multipliers in Stochastic SQP 1 of 30



Motivation Primal Iterates Lagrange Multipliers Numerical Demonstration Conclusion

Collaborators and reference

▶ F. E. Curtis, X. Jiang, and Q. Wang, “Almost-sure convergence of iterates and multipliers in
stochastic sequential quadratic optimization,” https://arxiv.org/abs/2308.03687.

Almost-Sure Convergence of Iterates and Multipliers in Stochastic SQP 2 of 30

https://arxiv.org/abs/2308.03687


Motivation Primal Iterates Lagrange Multipliers Numerical Demonstration Conclusion

Convergence of random variables

Consider a stochastic process {Vk} and random variable V defined with respect to (Ω,F ,P)

Convergence in probability: {Vk}
p−→ V if and only if

lim
k→∞

P[∥Vk − V ∥ > ϵ] = 0 for all ϵ ∈ R>0

Almost-sure convergence: {Vk}
a.s.−−−→ V if and only if

P
[

lim
k→∞

Vk = V

]
= 1
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Stochastic optimization (unconstrained)

min
x∈Rn

f(x)

where

▶ f : Rn → R
▶ f(x) = Eι[F (x, ι)] for all x ∈ Rn

▶ ι has probability space (Ωι,Fι,Pι)

▶ F : Rn × Ωι → R
▶ Eι[·] denotes expectation w.r.t. Pι

e.g., f(x) := ℓ(ϕ(x, a), b) in deep learning:
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Stochastic approximation/gradient method

Robbins and Monro (1951) shows that for

▶ solving an equation with a unique root (and other assumptions)

▶ using an algorithm with unbiased derivative estimates

▶ and unsummable and square-summable step sizes (e.g., α = O(1/k))

one can show
lim

k→∞
E[(Xk − x∗)2] = 0 =⇒ {Xk}

p−→ x∗.

Cast into the context of minimization of (potentially nonconvex) f : Rn → R, one can show that

lim
k→∞

E[∥∇f(Xk)∥2] = 0.
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Almost-sure convergence

Robbins and Siegmund (1971) proves the following lemma.

Lemma RS (simplified)

Let (Ω,F ,P) be a probability space and let {Fk} with Fk ⊆ Fk+1 for all k ∈ N be a sequence of
sub-σ-algebras of F . Let {Rk}, {Pk}, and {Qk} be sequences of nonnegative random variables such that
for all k ∈ N the tuple (Rk, Pk, Qk) is Fk-measurable. If

∑∞
k=1 Qk <∞ and, for all k ∈ N, one has

E[Rk+1|Fk] ≤ Rk − Pk + Qk,

then, almost-surely,
∑∞

k=1 Pk <∞ and lim
k→∞

Rk exists and is finite.

Therefore, it can be shown under certain assumptions that for

▶ stochastic approximation (solving an equation): {Xk}
a.s.−−−→ x∗

▶ stochastic gradient (minimization): {∇f(Xk)} a.s.−−−→ 0 (Bertsekas and Tsitsiklis (2000))
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Constrained stochastic optimization

min
x∈Rn

f(x)

s.t. c(x) = 0

where

▶ f(x) = Eι[F (x, ι)], as before

▶ c is continuously differentiable

▶ ∇f has Lipschitz constant L

▶ ∇c has Lipschitz constant Γ

▶ stationarity conditions:

∇f(x) +∇c(x)y = 0

c(x) = 0

Algorithm : Stochastic SQP

1: choose x1 ∈ Rn, τ ∈ R>0
2: for k ∈ {1, 2, . . . } do
3: estimate gradient: gk ≈ ∇f(xk)
4: compute step: solve[

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
5: choose step size: for small βk ∈ R>0,

αk ←
βkτ

τL + Γ

6: update iterate: set xk+1 ← xk + αkdk
7: end for
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Motivation #1: Physics-informed learning (e.g., PINNs)

Photo: Karniadakis et al.
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Motivation #2: Fair learning

Let

▶ Y be a feature vector

▶ A be a sensitive feature vector

▶ Z be the output/label

and consider

min
x∈Rn

E(Y,A,Z)

ℓ
ϕ

(
x,

[
Y
A

])
︸ ︷︷ ︸

Ẑ

, Z


 .

This loss might not be fair between subgroups in the population.

▶ Various criteria related to fairness (e.g., demographic parity, equalized odds, equalized opportunity)
leading to various measures (e.g., accuracy equality, disparate impact, measures conditioned on
outcome, measures conditioned on prediction)

▶ For example, in binary classification, disparate impact asks for the following constraints to hold:

P[Ẑ = z|A = 1] = P[Ẑ = z|A = 0] for each z ∈ {−1, 1}
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Convergence to stationarity

Assumption

▶ τ is sufficiently small

▶ {βk} = O(1/k) with β1 sufficiently small

Theorem (Berahas, Curtis, Robinson, Zhou (2021))

lim inf
k→∞

E
[
∥∇f(Xk) +∇c(Xk)TY true

k ∥2 + ∥c(Xk)∥
]

= 0

This shows that over some sequence the expected stationarity measure vanishes, but

▶ it does not guarantee that {Xk} converges in any sense and

▶ the values {Y true
k } are not realized by the algorithm, so

▶ it does not guarantee anything about {Yk}
Multipliers are important for verifying stationarity, active-set identification, etc.
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Preview

We are going to see conditions that guarantee behavior as seen below.

Solving a constrained logistic regression problem with the australian dataset from LIBSVM:
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Short version

Main result: If

▶ a stationarity measure grows sufficiently away from x∗

▶ {Xk} remains within a small neighborhood of x∗

then
{Xk}

a.s.−−−→ x∗.

Respectively, these are assumptions about

▶ the problem, similar to “local convexity” (generalized “P– L condition”)

▶ the algorithm behavior(!). . . necessary for the nonconvex setting to say anything about {Xk}
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Merit function
Convergence of the algorithm is driven by the exact merit function

ϕτ (X) = τf(X) + ∥c(X)∥

Reductions in a local model of ϕτ can be tied to a stationarity measure

∆qτ (X,∇f(X), H,Dtrue) ∼ ∥∇f(X) +∇c(X)Y ∥2 + ∥c(X)∥

Lemma

Suppose E[Gk|Fk] = ∇f(Xk) and E[∥Gk −∇f(Xk)|Fk∥2] ≤ σ2. Lemma RS with

Pk := βkτ
τL+Γ

∆qτ (Xk,∇f(Xk), Hk, D
true
k ), Qk :=

β2
kτ

2σ2

2ζ(τL+Γ)
, and Rk := ϕτ (Xk)− τfinf

shows that, almost surely,

lim
k→∞

{ϕτ (Xk)} exists and is finite and

lim inf
k→∞

∆qτ (Xk,∇f(Xk), Hk, D
true
k ) = 0
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Almost-sure convergence of the primal iterates

If {Xk} stays within a neighborhood of x∗ almost surely, where x∗ is a stationary point at which a
generalization of the Polyak– Lojasiewicz condition holds, then almost-sure convergence follows:

Theorem

Suppose that there exists x∗ ∈ X with c(x∗) = 0, µ ∈ R>1, and ϵ ∈ R>0 such that for all

x ∈ Xϵ,x∗ := {x ∈ X : ∥x− x∗∥2 ≤ ϵ}

one finds that

ϕτ (x)− ϕτ (x∗)

{
= 0 if x = x∗

∈ (0, µ(τ∥Z(x)T∇f(x)∥22 + ∥c(x)∥2)] otherwise,

where for all x ∈ Xϵ,x∗ one defines Z(x) ∈ Rn×(n−m) as some orthonormal matrix whose columns form a
basis for the null space of ∇c(x)T . Then, if lim sup

k→∞
{∥Xk − x∗∥2} ≤ ϵ almost surely, it follows that

{ϕτ (Xk)} a.s.−−−→ ϕτ (x∗), {Xk}
a.s.−−−→ x∗, and

{[
∇f(Xk) +∇c(Xk)Y true

k
c(Xk)

]}
a.s.−−−→ 0.
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Lagrange multipliers as a (noisy) mapping of the primal iterates

In a standard manner, it can be shown that

Yk = Mk(Hk(∇c(Xk)†)T c(Xk)−Gk) ∈ Rm,

where Mk is a product of a pseudoinverse of the derivative of c at Xk and a projection matrix:

Mk = ∇c(Xk)†(I −HkZk(ZT
k HkZk)−1ZT

k ) ∈ Rm×n

If {Xk}
a.s.−−−→ x∗, then one would expect

▶ {Y true
k } a.s.−−−→ y∗ (i.e., as above with ∇f(Xk) in place of Gk)

▶ {Yk} noisy with error proportional to error in stochastic gradient estimators
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Initial result

Assumption

Given x∗ ∈ X as a primal stationary point, there exist ϵ ∈ R>0, H : Rn → Sn, LH ∈ R>0,

M : Rn → Rm×n, and LM ∈ R>0 such that:

(i) Hk = H(Xk) whenever Xk ∈ Xϵ,x∗ ;

(ii) ∥H(x)−H(x)∥2 ≤ LH∥x− x∥2 for all (x, x) ∈ Xϵ,x∗ ×Xϵ,x∗ ;

(iii) Mk =M(Xk) whenever Xk ∈ Xϵ,x∗ ; and

(iv) ∥M(x)−M(x)∥2 ≤ LM∥x− x∥2 for all (x, x) ∈ Xϵ,x∗ ×Xϵ,x∗ .

Theorem

Suppose (x∗, y∗) is a stationary point. Then, for any k ∈ N, one finds ∥Xk − x∗∥2 ≤ ϵ implies

∥Yk − y∗∥2 ≤ κy∥Xk − x∗∥2 + r−1∥∇f(Xk)−Gk∥2
and ∥Y true

k − y∗∥2 ≤ κy∥Xk − x∗∥2,

where κy := κHLcr−2 + Lr−1 + κ∇fLM.
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{Yk} has error and {Y true
k } is not computed! Average Yk’s?

Unfortunately, this means that

▶ {Yk} always has error

▶ {Y true
k } converges if {Xk} does, but these are not realized (requires {∇f(Xk)})!

Idea: Average elements of {Yk}?
▶ If Xk = x∗ for all k ∈ N, then one can leverage the classical central limit theorem

▶ However, since {Xk} is a random process, multipliers are not IID estimators of y∗
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Martingale central limit theorem

Assumption

Suppose that {Mk} and {∆k} = {∇f(Xk)−Gk} satisfy

1
k
E[∥Mi∆i∥22] <∞ for all (k, i) ∈ N × [k], 1
k

k∑
i=1

E

[
∥Mi∆i∥221{

∥Mi∆i∥2√
k

>δ

}
∣∣∣∣∣Fi

] p−→ 0 for all δ ∈ R>0,

{
1
k

k∑
i=1

E[Mi∆i∆
T
i MT

i |Fi]

}
p−→ Σ for some Σ ∈ Sn, and

sup
k∈N

E

∥∥∥∥∥
k∑

i=1

1√
k
Mi∆i

∥∥∥∥∥
Θ

2

 <∞ for some Θ ∈ R>1.
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True and average Lagrange multiplier convergence

Theorem

If the iterate sequence converges almost surely to x∗, i.e., {Xk}
a.s.−−−→ x∗, then

{Y true
k } a.s.−−−→ y∗ and {Y avg

k } a.s.−−−→ y∗.
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Test problem

Consider constrained logistic regression of the form

min
x∈Rn

1
N

N∑
i=1

log(1 + e−γid
T
i x) s.t. Ax = b, ∥x∥22 = 1,

where

▶ D = [d1 · · · dN ] ∈ Rn×N is a feature matrix

▶ γ ∈ RN is a label vector

▶ A ∈ Rm×n and b ∈ Rm

Consider prior sequences as well as Lagrange multiplier averages

Y
avgϵ
k := average of Yj ’s corresponding to Xj ’s with ∥Xk −Xj∥ ≤ ϵ
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LIBSVM datasets
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australian dataset
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Summary

min
x∈Rn

f(x)

s.t. c(x) = 0

where

▶ f(x) = Eι[F (x, ι)]

▶ c is continuously differentiable

For Stochastic SQP, conditions that guarantee

▶ almost-sure convergence of {Xk} to x∗

▶ {∥Yk − y∗∥} bounded by {∥Gk −∇f(Xk)∥}
▶ almost-sure convergence of {Y true

k } to y∗

▶ almost-sure convergence of {Y avg
k } to y∗
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