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Stochastic algorithms

Consider an algorithm whose behavior (over an entire run) is dictated by a random draw from

Γ× Γ× Γ× · · · .

Our aim is to prove conclusions with respect to a probability space (Ω,F ,P), where

▶ Ω = Γ× Γ× Γ× · · · ;
▶ F is a σ-algebra on Ω, specifically, the set of events (i.e., measurable subsets of Ω); and

▶ P : F → [0, 1] is a probability measure.
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Probability space (Ω,F ,P)

One can understand Ω = Γ× Γ× Γ× · · · through the axiom of choice.

An algebra A on Ω is a collection of subsets of Ω that are

▶ closed under finite numbers of union operations (X ∈ A and Y ∈ A implies X ∪ Y ∈ A);
▶ closed under finite numbers of complement operations (X ∈ A implies Xc ∈ A).

A σ-algebra F is an algebra that is also closed under countable union operations, i.e.,

Xi ∈ F for all i ∈ N implies
⋃
i∈N

Xi ∈ F .

The probability measure P has unit mass (i.e., P(Ω) = 1) and is countably additive in that

P

⋃
i∈N
Xi

 =
∑
i∈N

P(Xi) for any sequence of disjoint events {Xi}.
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Example

Consider for simplicity the setting of only two iterations with flip-of-a-coin randomness, so

Ω = Γ× Γ = {0, 1} × {0, 1}.

The σ-algebra F of all possible events has the form

F = 2Ω =



∅,
{00}, {01}, {10}, {11},
{00, 01}, {00, 10}, {00, 11}, {01, 10}, {01, 11}, {10, 11},
{00, 01, 10}, {00, 01, 11}, {00, 10, 11}, {01, 10, 11},
{00, 01, 10, 11} ≡ Ω


.

A corresponding probability measure P would give us probabilities for all possible events.
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Sub-σ-algebras

A sub-σ-algebra of a σ-algebra F is any subset of F that is also a σ-algebra.

Using our example, one can consider the information before the first iteration as

F0 = {∅,Ω} ⊂ F .

Similarly, one can consider the information after the first iteration as

F1 = 2{0,1} × {0, 1} =


∅,
{0},
{1},
{0, 1}

× {0, 1} =

∅,
{00, 01},
{10, 11},
{00, 01, 10, 11} ≡ Ω

 .

And again, one can consider the information after the second iteration as

F2 = 2{0,1} × 2{0,1} = F .

Overall, one finds that F0 ⊆ F1 ⊆ F2 ≡ F .
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Stochastic Gradient method

Let’s return to: An algorithm whose behavior (over an entire run) is dictated by a random draw from

Ω∞
1 = Γ× Γ× Γ× · · · .

Consider min
x∈Rn

f(x), where inf
x∈Rn

f(x) > −∞ and ∇f : Rn → Rn is Lipschitz continuous with constant L.

Algorithm SG : Stochastic Gradient method

1: choose an initial point x1 ∈ Rn and step sizes {αk} > 0
2: for k ∈ {1, 2, . . . } do
3: set xk+1 ← xk − αkgk, where gk ≈ ∇f(xk)
4: end for

One can view any {(xk, gk)} as a realization of {(Xk, Gk)}, where for all k ∈ N

xk = Xk(ω) and gk = Gk(ω) given ω ∈ Ω.
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Filtration

What is the associated sequence of sub-σ-algebras?

▶ The information before the first iteration is simply given by

F0 = {∅,Ω∞
1 }.

▶ After the stochastic gradient computation in the first iteration, let

F1 = 2Γ × Ω∞
2 .

▶ After the stochastic gradient computation in the second iteration, let

F2 = 2Γ × 2Γ × Ω∞
3

▶ . . . and so on.
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Random variables measurable with respect to Fk

Consider a random variable for which a realization is determined by the draw, e.g., Xk.

▶ Fj for all j < k does not give enough information about Xk.

▶ Fj for all j ≥ k does give enough information about Xk.

We say Xk is measurable with respect to Fk if and only if all “inverses” of Xk are in Fk.

▶ For our purposes going forward, it is sufficient to understand that this means

Xk = E[Xk|Fk] for all k ∈ N.

For the stochastic gradient method, one finds that

▶ Xk is Fk-measurable for all k ∈ N
▶ Gk is Fk+1-measurable for all k ∈ N.
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Convergence of SG

Let E[·] denote expectation with respect to P[·].

Assumption

For all k ∈ N, one has that

▶ E[Gk|Fk] = ∇f(Xk) and

▶ E[∥Gk∥22|Fk] ≤M +M∇f∥∇f(Xk)∥22

By Lipschtiz continuity of ∇f and construction of the algorithm, one finds

f(Xk+1)− f(Xk) ≤ ∇f(Xk)
T (Xk+1 −Xk) +

1
2
L∥Xk+1 −Xk∥22

= −αk∇f(Xk)
TGk + 1

2
α2
kL∥Gk∥22

=⇒ E[f(Xk+1)|Fk]− f(Xk) ≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kLE[∥Gk∥22|Fk]

≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kL(M +M∇f∥∇f(Xk)∥22),

where the last inequalities follow by the assumption and since f(Xk) and ∇f(Xk) are Fk-measurable.
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SG theory

Taking total expectation, one arrives at

E[f(Xk+1)− f(Xk)] ≤ −αk(1− 1
2
αkLM∇f )E[∥∇f(Xk)∥22] + 1

2
α2
kLM

Theorem

αk =
1

LM∇f
=⇒ E

 1

k

k∑
j=1

∥∇f(Xj)∥22

 ≤Mk
k→∞−−−−→ O

(
M

M∇f

)

αk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 αj

) k∑
j=1

αj∥∇f(Xj)∥22

→ 0

=⇒ lim inf
k→∞

E[∥∇f(Xk)∥22] = 0

(further steps) and ∇f(Xk)→∞ almost surely.
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Sequential quadratic optimization (SQP)

Consider

min
x∈Rn

f(x)

s.t. c(x) = 0

with J ≡ ∇c and H positive definite over Null(J), either viewpoint

[
∇f(x) + J(x)T y

c(x)

]
= 0 or

min
d∈Rn

f(x) +∇f(x)T d+ 1
2
dTHd

s.t. c(x) + J(x)d = 0

leads to the same “Newton-SQP system”[
Hk JT

k
Jk 0

] [
dk
yk

]
= −

[
∇f(xk)

ck

]
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Stochastic SQP
Algorithm guided by merit function with adaptive parameter τ defined by

ϕ(x, τ) = τf(x) + ∥c(x)∥1

Algorithm : Stochastic SQP

1: choose x1 ∈ Rn, τ0 ∈ (0,∞), {βk} ∈ (0, 1]N

2: for k ∈ {1, 2, . . . } do
3: compute step: solve [

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
4: update merit parameter: set τk to ensure

ϕ′(xk, τk, dk) ≤ −∆q(xk, τk, gk, dk)≪ 0

5: compute step size: set

αk = Θ

(
βkτk

τkL∇f + L∇c

)
6: then xk+1 ← xk + αkdk
7: end for
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Deterministic vs. stochastic setting

Convergence analysis hinges on the behavior of the sequence {Tk}.

Deterministic setting under nice function assumptions:

▶ τk = τmin for all k ≥ kmin for some τmin ∈ (0,∞) and kmin ∈ N.

▶ Note, however, that (τmin, kmin) is NOT knowable a priori and depends on x1.

Stochastic setting under nice function assumptions, but general noise assumptions:

▶ Ebig := {{Tk} decreases, but not enough}
▶ Egood := {{Tk} decreases sufficiently and does not vanish to zero}
▶ Ezero := {{Tk} vanishes to zero}

Even the good case is not straightforward!

▶ Imagine a sequence of events in Egood over which kmin →∞.
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Assumptions that are reasonable?

Need to have an honest discussion in the community about what assumptions are reasonable.

Prove probability of events Ebig, Egood, and Ezero?

▶ Seems quite impossible in the general nonconvex landscape.

▶ If this means that we abandon certain settings/algorithms, that’s a shame.

Ebig ∪ Egood essentially requires bounded noise.

▶ Enough to focus on bounded noise over a finite number of iterations?

▶ Enough to focus on the event that the noise remains bounded (over infinite iterations)?
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Reality check

Note that even in the deterministic setting, some assumptions can be unreasonable.

▶ The merit function for min
x∈R

x3 s.t. x ≥ 0 is not bounded below.

▶ People understand that in practice certain safeguards can be incorporated.

For other stochastic algorithms, noise assumptions are not verifiable in practice.

▶ For example, probabilistic guarantee of certain accuracy.
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Proposal

My feeling is that it should be considered sufficient to analyze the algorithm under reasonable events, e.g.,

E := E(τmin, kmin) := {Tk = T for sufficiently small T ∈ [τmin,∞) for all k ≥ kmin}.

(Recall that {τk} can be bounded below in deterministic setting, although kmin not known.)

For the purposes of analysis, this involves focusing on the trace σ-algbra G := F ∩ {E}.
▶ Redefine the sequence of sub-σ-algebras as {Gk}, where

Gk := Fk ∩ {E} for all k ∈ N.

▶ Key: The macroparameter T ≥ τmin is Gkmin
-measurable.
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Summary

Discussed procedures for analyzing stochastic algorithms for smooth nonconvex optimization.

▶ Each realization of the algorithm corresponds to a draw from Ω = Γ× Γ× Γ× · · · .
▶ Step-by-step analysis conducted with sequence of sub-σ-algebras {Fk}.

Algorithms with random macroparameters cannot satisfy idealized assumptions.

▶ Need to consider what assumptions are reasonable in practice

▶ . . . or else we throw out the baby (good algorithms)

▶ . . . with the bath water (unreasonable demands for analysis)!
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