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Stochastic algorithms

Consider an algorithm whose behavior (over an entire run) is dictated by a random draw from
'xDIxI'x---.

Our aim is to prove conclusions with respect to a probability space (2, F,P), where
P OQ=TXxXI'xIx---;
> F is a o-algebra on , specifically, the set of events (i.e., measurable subsets of Q2); and

> P:F — [0,1] is a probability measure.
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Probability space (2, F,P)

One can understand Q =T'x I' X I X - - - through the axiom of choice.

An algebra A on € is a collection of subsets of  that are
» closed under finite numbers of union operations (X € A and Y € A implies X UY € A);

» closed under finite numbers of complement operations (X € A implies X¢ € A).
A o-algebra F is an algebra that is also closed under countable union operations, i.e.,

X; € F for all 7 € N implies U X, e F.
1€EN

The probability measure P has unit mass (i.e., P(Q2) = 1) and is countably additive in that

P U X | = Z P(X;) for any sequence of disjoint events {X;}.
i€N 1€N

I
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Example

Consider for simplicity the setting of only two iterations with flip-of-a-coin randomness, so
Q=IxTI={0,1} x {0,1}.
The o-algebra F of all possible events has the form

0,

{oo}, {o1}, {10}, {11},

F =22 ={{00,01},{00, 10}, {00, 11}, {01, 10}, {01, 11}, {10, 11},
{00, 01,10}, {00,01, 11}, {00, 10,11}, {01, 10, 11},
{00,01,10,11} = Q

A corresponding probability measure P would give us probabilities for all possible events.
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Sub-o-algebras

A sub-c-algebra of a o-algebra F is any subset of F that is also a o-algebra.

Using our example, one can consider the information before the first iteration as
Fo=1{0,9} C F.

Similarly, one can consider the information after the first iteration as

0, .
0}, 00,01},
{0,1} {00,01,10,11} = ©

And again, one can consider the information after the second iteration as

Fp =201}y ol0t} — 7

Overall, one finds that 7o C F; C Fa = F.

I
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Stochastic Gradient method

Let’s return to: An algorithm whose behavior (over an entire run) is dictated by a random draw from
QP =I’'xIxIx---.

Consider m]iRI}L f(z), where iann f(z) > —oo and Vf : R™ — R™ is Lipschitz continuous with constant L.
TE e

Algorithm SG : Stochastic Gradient method
choose an initial point z; € R™ and step sizes {a} > 0
: for ke {1,2,...} do
set Tp 11 ¢ T — apgk, where g = V f(zy)
end for

Lol

One can view any {(xg, gr)} as a realization of {(X,Gg)}, where for all k € N

2, = Xk (w) and g = Gg(w) given w € Q.

I I
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Filtration

What is the associated sequence of sub-o-algebras?

» The information before the first iteration is simply given by
Fo ={0,0°}.
» After the stochastic gradient computation in the first iteration, let
Fr=2"x Qs°.
> After the stochastic gradient computation in the second iteration, let
Fo =2 x ol x g

» ...and so on.
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Random variables measurable with respect to Fj

Consider a random variable for which a realization is determined by the draw, e.g., X}.
» F; for all j < k does not give enough information about Xj.
» Fj for all j > k does give enough information about Xj.

We say Xj is measurable with respect to Fj if and only if all “inverses” of X are in Fy.

» For our purposes going forward, it is sufficient to understand that this means
Xk = E[Xk|]:k] for all k € N.

For the stochastic gradient method, one finds that
> X is Fir-measurable for all £ € N
» G} is Fpy1-measurable for all k € N.

I I
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Convergence of SG

Let E[] denote expectation with respect to P[-].

Assumption
For all k € N, one has that
> E[Gk|Fk] = Vf(Xk) and
> E[|GlI31Fx] < M + Mys||VF(Xe)l3

By Lipschtiz continuity of V f and construction of the algorithm, one finds

F(Xpq1) = F(Xk) < VFXR)T (X1 — Xg) + 3 L1 X1 — Xill3
—oxVf(Xp)TGr + 3ai LGk ll3

= E[f(Xp41)1Fr) — F(Xi) < —arlIVF(Xe)|3 + 507 LE[|| G131 Fx]
—ap|[VA(Xe)II5 + 302 L(M + My ||V £(Xi)II3),

IN A

where the last inequalities follow by the assumption and since f(X}) and V f(Xy) are Fr-measurable.

I I
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SG theory

Taking total expectation, one arrives at

E[f (Xit1) — f(Xp)] € —ar(1 — S LMw )E[|V £(Xk)[13] + $ai LM

Theorem
1 1 fsoo M
o, = = E |- S IVAX)I3 sMk—wo(_)
Tife; L IT7OE T
1 1 k
aw=0(3) =Bl D elvII| »o
( j=1 aj) j=1

= liminf E[|Vf(X3)[I3] =0
k— o0

(further steps) and Vf(Xg) — co almost surely.

I
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Sequential quadratic optimization (SQP)

Consider

i f(z)

s.t. c(z) =0

with J = Vc and H positive definite over Null(J), either viewpoint

min f(z) + Vf(z)'d+ 2d"Hd
or deRr™

V() + J(m)Ty] o

e(z)

s.t. c(z) + J(z)d =0

leads to the same “Newton-SQP system”

e B[]

I
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Stochastic SQP

Algorithm guided by merit function with adaptive parameter 7 defined by
Pz, 7) = 7f(x) + [lc(z)|l1

Algorithm : Stochastic SQP

1: choose 1 € R™, 79 € (0,00), {8} € (0,1]¥
2: for k€ {1,2,...} do

3: compute step: solve

Hy  JE [de] _ _ [9x

Jg o 0] [yk Ck
4: update merit parameter: set 75 to ensure

&' (xr, Ty di) < —Ag(ag, Tk, gk, di) K0
5: compute step size: set
.
=0 ( BTk )
TkLvy+ Lyve

6: then xp11 <+ =) + ardy

7: end for

I I
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Deterministic vs. stochastic setting

Convergence analysis hinges on the behavior of the sequence {7j}.

Deterministic setting under nice function assumptions:
» Ti = Tmin for all k > kpyin for some i, € (0,00) and kpyin € N.

> Note, however, that (Tmin, kmin) 18 NOT knowable a priori and depends on ;.

Stochastic setting under nice function assumptions, but general noise assumptions:
» Epig := {{7Tx} decreases, but not enough}
» Egood := {{7Tr} decreases sufficiently and does not vanish to zero}
» Eiero := {{7} vanishes to zero}

Even the good case is not straightforward!

> Imagine a sequence of events in Egooq over which kpyin — oo.
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Assumptions that are reasonable?

Need to have an honest discussion in the community about what assumptions are reasonable.

Prove probability of events Eyig, Fgood, and Egero?
P> Seems quite impossible in the general nonconvex landscape.

> If this means that we abandon certain settings/algorithms, that’s a shame.

Ehig U Egooq essentially requires bounded noise.
» Enough to focus on bounded noise over a finite number of iterations?

> Enough to focus on the event that the noise remains bounded (over infinite iterations)?
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Reality check

Note that even in the deterministic setting, some assumptions can be unreasonable.

3

» The merit function for miﬁ z° s.t. x > 0 is not bounded below.
TE

» People understand that in practice certain safeguards can be incorporated.
For other stochastic algorithms, noise assumptions are not verifiable in practice.

> For example, probabilistic guarantee of certain accuracy.
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Proposal

My feeling is that it should be considered sufficient to analyze the algorithm under reasonable events, e.g.,
E := E(Tmin; kmin) := {Tr = T for sufficiently small 7 € [Tiin, 00) for all k& > Kkmin}-
(Recall that {7} can be bounded below in deterministic setting, although kp,in not known.)

For the purposes of analysis, this involves focusing on the trace o-algbra G := F N {E}.

> Redefine the sequence of sub-c-algebras as {Gy}, where
Gk :=Fr N{E} forall k€ N.

» Key: The macroparameter T > Tmin is G . -measurable.

min

I I
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: :
Summary

Discussed procedures for analyzing stochastic algorithms for smooth nonconvex optimization.
» Each realization of the algorithm corresponds to a draw from Q =T X T'x ' x ---.

> Step-by-step analysis conducted with sequence of sub-o-algebras {Fy}.

Algorithms with random macroparameters cannot satisfy idealized assumptions.
» Need to consider what assumptions are reasonable in practice
> ...or else we throw out the baby (good algorithms)

» ... with the bath water (unreasonable demands for analysis)!
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