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Stochastic algorithms

Consider an algorithm whose behavior (over an entire run) is dictated by a random draw from

Γ× Γ× Γ× · · · .

Our aim is to prove conclusions with respect to a probability space (Ω,F ,P), where

▶ Ω = Γ× Γ× Γ× · · · ;
▶ F is a σ-algebra on Ω, specifically, the set of events (i.e., measurable subsets of Ω); and

▶ P : F → [0, 1] is a probability measure.
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Probability space (Ω,F ,P)

One can understand Ω = Γ× Γ× Γ× · · · through the axiom of choice.

An algebra A on Ω is a collection of subsets of Ω that are

▶ closed under finite numbers of union operations (X ∈ A and Y ∈ A implies X ∪ Y ∈ A);
▶ closed under finite numbers of complement operations (X ∈ A implies Xc ∈ A).

A σ-algebra F is an algebra that is also closed under countable union operations, i.e.,

Xi ∈ F for all i ∈ N implies
⋃
i∈N

Xi ∈ F .

The probability measure P has unit mass (i.e., P(Ω) = 1) and is countably additive in that

P

⋃
i∈N
Xi

 =
∑
i∈N

P(Xi) for any sequence of disjoint events {Xi}.
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Example

Consider for simplicity the setting of only two iterations with flip-of-a-coin randomness, so

Ω = Γ× Γ = {0, 1} × {0, 1}.

The σ-algebra F of all possible events has the form

F = 2Ω =



∅,
{00}, {01}, {10}, {11},
{00, 01}, {00, 10}, {00, 11}, {01, 10}, {01, 11}, {10, 11},
{00, 01, 10}, {00, 01, 11}, {00, 10, 11}, {01, 10, 11},
{00, 01, 10, 11} ≡ Ω


.

A corresponding probability measure P would give us probabilities for all possible events.
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Sub-σ-algebras

A sub-σ-algebra of a σ-algebra F is any subset of F that is also a σ-algebra.

Using our example, one can consider the information before the first iteration as

F0 = {∅,Ω} ⊂ F .

Similarly, one can consider the information after the first iteration as

F1 = 2{0,1} × {0, 1} =


∅,
{0},
{1},
{0, 1}

× {0, 1} =

∅,
{00, 01},
{10, 11},
{00, 01, 10, 11} ≡ Ω

 .

And again, one can consider the information after the second iteration as

F2 = 2{0,1} × 2{0,1} = F .

Overall, one finds that F0 ⊆ F1 ⊆ F2 ≡ F .
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Stochastic Gradient method

Let’s return to: An algorithm whose behavior (over an entire run) is dictated by a random draw from

Ω∞
1 = Γ× Γ× Γ× · · · .

Consider min
x∈Rn

f(x), where inf
x∈Rn

f(x) > −∞ and ∇f : Rn → Rn is Lipschitz continuous with constant L.

Algorithm SG : Stochastic Gradient method

1: choose an initial point x1 ∈ Rn and step sizes {αk} > 0
2: for k ∈ {1, 2, . . . } do
3: set xk+1 ← xk − αkgk, where gk ≈ ∇f(xk)
4: end for

One can view any {(xk, gk)} as a realization of {(Xk, Gk)}, where for all k ∈ N

xk = Xk(ω) and gk = Gk(ω) given ω ∈ Ω.
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Filtration

What is the associated sequence of sub-σ-algebras?

▶ The information before the first iteration is simply given by

F0 = {∅,Ω∞
1 }.

▶ After the stochastic gradient computation in the first iteration, let

F1 = 2Γ × Ω∞
2 .

▶ After the stochastic gradient computation in the second iteration, let

F2 = 2Γ × 2Γ × Ω∞
3

▶ . . . and so on.
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Random variables measurable with respect to Fk

Consider a random variable for which a realization is determined by the draw, e.g., Xk.

▶ Fj for all j < k does not give enough information about Xk.

▶ Fj for all j ≥ k does give enough information about Xk.

We say Xk is measurable with respect to Fk if and only if all “inverses” of Xk are in Fk.

▶ For our purposes going forward, it is sufficient to understand that this means

Xk = E[Xk|Fk] for all k ∈ N.

For the stochastic gradient method, one finds that

▶ Xk is Fk-measurable for all k ∈ N
▶ Gk is Fk+1-measurable for all k ∈ N.
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Convergence of SG

Let E[·] denote expectation with respect to P[·].

Assumption

For all k ∈ N, one has that

▶ E[Gk|Fk] = ∇f(Xk) and

▶ E[∥Gk∥22|Fk] ≤M +M∇f∥∇f(Xk)∥22

By Lipschtiz continuity of ∇f and construction of the algorithm, one finds

f(Xk+1)− f(Xk) ≤ ∇f(Xk)
T (Xk+1 −Xk) +

1
2
L∥Xk+1 −Xk∥22

= −αk∇f(Xk)
TGk + 1

2
α2
kL∥Gk∥22

=⇒ E[f(Xk+1)|Fk]− f(Xk) ≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kLE[∥Gk∥22|Fk]

≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kL(M +M∇f∥∇f(Xk)∥22),

where the last inequalities follow by the assumption and since f(Xk) and ∇f(Xk) are Fk-measurable.
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SG theory

Taking total expectation, one arrives at

E[f(Xk+1)− f(Xk)] ≤ −αk(1− 1
2
αkLM∇f )E[∥∇f(Xk)∥22] + 1

2
α2
kLM

Theorem

αk =
1

LM∇f
=⇒ E

 1

k

k∑
j=1

∥∇f(Xj)∥22

 ≤Mk
k→∞−−−−→ O

(
M

M∇f

)

αk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 αj

) k∑
j=1

αj∥∇f(Xj)∥22

→ 0

=⇒ lim inf
k→∞

E[∥∇f(Xk)∥22] = 0

(further steps) and ∇f(Xk)→∞ almost surely.
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Sequential quadratic optimization (SQP)

Consider

min
x∈Rn

f(x)

s.t. c(x) = 0

with J ≡ ∇c and H positive definite over Null(J), either viewpoint

[
∇f(x) + J(x)T y

c(x)

]
= 0 or

min
d∈Rn

f(x) +∇f(x)T d+ 1
2
dTHd

s.t. c(x) + J(x)d = 0

leads to the same “Newton-SQP system”[
Hk JT

k
Jk 0

] [
dk
yk

]
= −

[
∇f(xk)

ck

]
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Stochastic SQP
Algorithm guided by merit function with adaptive parameter τ defined by

ϕ(x, τ) = τf(x) + ∥c(x)∥1

Algorithm : Stochastic SQP

1: choose x1 ∈ Rn, τ0 ∈ (0,∞), {βk} ∈ (0, 1]N

2: for k ∈ {1, 2, . . . } do
3: compute step: solve [

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
4: update merit parameter: set τk to ensure

ϕ′(xk, τk, dk) ≤ −∆q(xk, τk, gk, dk)≪ 0

5: compute step size: set

αk = Θ

(
βkτk

τkL∇f + L∇c

)
6: then xk+1 ← xk + αkdk
7: end for
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Deterministic vs. stochastic setting

Convergence analysis hinges on the behavior of the sequence {Tk}.

Deterministic setting under nice function assumptions:

▶ τk = τmin for all k ≥ kmin for some τmin ∈ (0,∞) and kmin ∈ N.

▶ Note, however, that (τmin, kmin) is NOT knowable a priori and depends on x1.

Stochastic setting under nice function assumptions, but general noise assumptions:

▶ Ebig := {{Tk} decreases, but not enough}
▶ Egood := {{Tk} decreases sufficiently and does not vanish to zero}
▶ Ezero := {{Tk} vanishes to zero}

Even the good case is not straightforward!

▶ Imagine a sequence of events in Egood over which kmin →∞.
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Assumptions that are reasonable?

Need to have an honest discussion in the community about what assumptions are reasonable.

Prove probability of events Ebig, Egood, and Ezero?

▶ Seems quite impossible in the general nonconvex landscape.

▶ If this means that we abandon certain settings/algorithms, that’s a shame.

Ebig ∪ Egood essentially requires bounded noise.

▶ Enough to focus on bounded noise over a finite number of iterations?

▶ Enough to focus on the event that the noise remains bounded (over infinite iterations)?
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Reality check

Note that even in the deterministic setting, some assumptions can be unreasonable.

▶ The merit function for min
x∈R

x3 s.t. x ≥ 0 is not bounded below.

▶ People understand that in practice certain safeguards can be incorporated.

For other stochastic algorithms, noise assumptions are not verifiable in practice.

▶ For example, probabilistic guarantee of certain accuracy.

Stochastic Algorithms with Adaptive Parameters for Solving Constrained Optimization Problems 20 of 24



Stochastic Processes Stochastic Gradient Method Stochastic Methods with Adaptive Parameters Conclusion

Proposal

My feeling is that it should be considered sufficient to analyze the algorithm under reasonable events, e.g.,

E := E(τmin, kmin) := {Tk = T for sufficiently small T ∈ [τmin,∞) for all k ≥ kmin}.

(Recall that {τk} can be bounded below in deterministic setting, although kmin not known.)

For the purposes of analysis, this involves focusing on the trace σ-algbra G := F ∩ {E}.
▶ Redefine the sequence of sub-σ-algebras as {Gk}, where

Gk := Fk ∩ {E} for all k ∈ N.

▶ Key: The macroparameter T ≥ τmin is Gkmin
-measurable.
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Summary

Discussed procedures for analyzing stochastic algorithms for smooth nonconvex optimization.

▶ Each realization of the algorithm corresponds to a draw from Ω = Γ× Γ× Γ× · · · .
▶ Step-by-step analysis conducted with sequence of sub-σ-algebras {Fk}.

Algorithms with random macroparameters cannot satisfy idealized assumptions.

▶ Need to consider what assumptions are reasonable in practice

▶ . . . or else we throw out the baby (good algorithms)

▶ . . . with the bath water (unreasonable demands for analysis)!
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