Stochastic Algorithms with Adaptive Parameters for Solving Constrained Optimization Problems

Frank E. Curtis, Lehigh University

presented at

INFORMS Annual Meeting

October 17, 2023

Stochastic Gradient Method 000000

Collaborators and references

- A. S. Berahas, F. E. Curtis, D. P. Robinson, and B. Zhou, "Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization," SIAM Journal on Optimization, 31(2):1352–1379, 2021.
- A. S. Berahas, F. E. Curtis, M. J. O'Neill, and D. P. Robinson, "A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear Equality Constrained Optimization with Rank-Deficient Jacobians," https://arxiv.org/abs/2106.13015.
- F. E. Curtis, D. P. Robinson, and B. Zhou, "Inexact Sequential Quadratic Optimization for Minimizing a Stochastic Objective Subject to Deterministic Nonlinear Equality Constraints," https://arxiv.org/abs/2107.03512.
- F. E. Curtis, M. J. O'Neill, and D. P. Robinson, "Worst-Case Complexity of an SQP Method for Nonlinear Equality Constrained Stochastic Optimization," *Mathematical Programming* (online).
- F. E. Curtis, S. Liu, and D. P. Robinson, "Fair Machine Learning through Constrained Stochastic Optimization and an ε-Constraint Method," Optimization Letters (online).
- F. E. Curtis, D. P. Robinson, and B. Zhou, "Sequential Quadratic Optimization for Stochastic Optimization with Deterministic Nonlinear Inequality and Equality Constraints," https://arxiv.org/abs/2302.14790.
- F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, "A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems," https://arxiv.org/abs/2304.14907.
- F. E. Curtis, X. Jiang, and Q. Wang, "Almost-sure convergence of iterates and multipliers in stochastic sequential quadratic optimization," https://arxiv.org/abs/2308.03687.

Stochastic Processes

Stochastic Gradient Method

Stochastic Methods with Adaptive Parameters

Stochastic Processes

Stochastic Gradient Method

Stochastic Methods with Adaptive Parameters

Stochastic algorithms

Consider an algorithm whose behavior (over an entire run) is dictated by a random draw from

 $\Gamma \times \Gamma \times \Gamma \times \cdots .$

Our aim is to prove conclusions with respect to a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where

- $\blacktriangleright \ \Omega = \Gamma \times \Gamma \times \Gamma \times \cdots;$
- \triangleright \mathcal{F} is a σ -algebra on Ω , specifically, the set of events (i.e., measurable subsets of Ω); and
- $\blacktriangleright \mathbb{P}: \mathcal{F} \to [0,1] \text{ is a probability measure.}$

Probability space $(\Omega, \mathcal{F}, \mathbb{P})$

One can understand $\Omega = \Gamma \times \Gamma \times \Gamma \times \cdots$ through the axiom of choice.

An algebra \mathcal{A} on Ω is a collection of subsets of Ω that are

- ▶ closed under finite numbers of union operations $(X \in \mathcal{A} \text{ and } Y \in \mathcal{A} \text{ implies } X \cup Y \in \mathcal{A})$;
- ▶ closed under finite numbers of complement operations $(X \in \mathcal{A} \text{ implies } X^c \in \mathcal{A})$.

A σ -algebra \mathcal{F} is an algebra that is also closed under countable union operations, i.e.,

$$X_i \in \mathcal{F} \text{ for all } i \in \mathbb{N} \text{ implies } \bigcup_{i \in \mathbb{N}} X_i \in \mathcal{F}.$$

The probability measure \mathbb{P} has unit mass (i.e., $\mathbb{P}(\Omega) = 1$) and is countably additive in that

$$\mathbb{P}\left(\bigcup_{i\in\mathbb{N}}\mathcal{X}_i\right) = \sum_{i\in\mathbb{N}}\mathbb{P}(\mathcal{X}_i) \text{ for any sequence of disjoint events } \{\mathcal{X}_i\}.$$

Example

Consider for simplicity the setting of only two iterations with flip-of-a-coin randomness, so

$$\Omega = \Gamma \times \Gamma = \{0, 1\} \times \{0, 1\}.$$

The σ -algebra \mathcal{F} of all possible events has the form

$$\mathcal{F} = 2^{\Omega} = \begin{cases} \emptyset, \\ \{00\}, \{01\}, \{10\}, \{11\}, \\ \{00, 01\}, \{00, 10\}, \{00, 11\}, \{01, 10\}, \{01, 11\}, \{10, 11\}, \\ \{00, 01, 10\}, \{00, 01, 11\}, \{00, 10, 11\}, \{01, 10, 11\}, \\ \{00, 01, 10, 11\} \equiv \Omega \end{cases} \end{cases}$$

A corresponding probability measure $\mathbb P$ would give us probabilities for all possible events.

Stochastic Processes	Stochastic Gradient Method 000000	Stochastic Methods with Adaptive Parameters 0000000	Conclusion 000

Sub- σ -algebras

A sub- σ -algebra of a σ -algebra \mathcal{F} is any subset of \mathcal{F} that is also a σ -algebra.

Using our example, one can consider the information before the first iteration as

$$\mathcal{F}_0 = \{\emptyset, \Omega\} \subset \mathcal{F}.$$

Similarly, one can consider the information after the first iteration as

$$\mathcal{F}_{1} = 2^{\{0,1\}} \times \{0,1\} = \begin{cases} \emptyset, \\ \{0\}, \\ \{1\}, \\ \{0,1\} \end{cases} \times \{0,1\} = \begin{cases} \emptyset, \\ \{00,01\}, \\ \{10,11\}, \\ \{00,01,10,11\} \equiv \Omega \end{cases}$$

And again, one can consider the information after the second iteration as

$$\mathcal{F}_2 = 2^{\{0,1\}} \times 2^{\{0,1\}} = \mathcal{F}.$$

Overall, one finds that $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_2 \equiv \mathcal{F}$.

Stochastic Processes

Stochastic Gradient Method

Stochastic Methods with Adaptive Parameters

Stochastic Gradient method

Let's return to: An algorithm whose behavior (over an entire run) is dictated by a random draw from

 $\Omega_1^{\infty} = \Gamma \times \Gamma \times \Gamma \times \cdots .$

Consider $\min_{x \in \mathbb{R}^n} f(x)$, where $\inf_{x \in \mathbb{R}^n} f(x) > -\infty$ and $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous with constant L.

Algorithm SG : Stochastic Gradient method

1: choose an initial point $x_1 \in \mathbb{R}^n$ and step sizes $\{\alpha_k\} > 0$ 2: for $k \in \{1, 2, ...\}$ do 3: set $x_{k+1} \leftarrow x_k - \alpha_k g_k$, where $g_k \approx \nabla f(x_k)$ 4: end for

One can view any $\{(x_k, g_k)\}$ as a realization of $\{(X_k, G_k)\}$, where for all $k \in \mathbb{N}$

 $x_k = X_k(\omega)$ and $g_k = G_k(\omega)$ given $\omega \in \Omega$.

Filtration

What is the associated sequence of sub- σ -algebras?

▶ The information before the first iteration is simply given by

$$\mathcal{F}_0 = \{\emptyset, \Omega_1^\infty\}.$$

▶ After the stochastic gradient computation in the first iteration, let

$$\mathcal{F}_1 = 2^{\Gamma} \times \Omega_2^{\infty}.$$

▶ After the stochastic gradient computation in the second iteration, let

$$\mathcal{F}_2 = 2^{\Gamma} \times 2^{\Gamma} \times \Omega_3^{\infty}$$

 \blacktriangleright . . . and so on.

Random variables measurable with respect to \mathcal{F}_k

Consider a random variable for which a realization is determined by the draw, e.g., X_k .

- ▶ \mathcal{F}_i for all j < k does not give enough information about X_k .
- \triangleright \mathcal{F}_i for all i > k does give enough information about X_k .

We say X_k is measurable with respect to \mathcal{F}_k if and only if all "inverses" of X_k are in \mathcal{F}_k .

▶ For our purposes going forward, it is sufficient to understand that this means

 $X_k = \mathbb{E}[X_k | \mathcal{F}_k]$ for all $k \in \mathbb{N}$.

For the stochastic gradient method, one finds that

- \triangleright X_k is \mathcal{F}_k -measurable for all $k \in \mathbb{N}$
- G_k is \mathcal{F}_{k+1} -measurable for all $k \in \mathbb{N}$.

Convergence of SG

Let $\mathbb{E}[\cdot]$ denote expectation with respect to $\mathbb{P}[\cdot]$.

Assumption

For all $k \in \mathbb{N}$, one has that

- $\blacktriangleright \mathbb{E}[G_k | \mathcal{F}_k] = \nabla f(X_k) \text{ and }$
- $\blacktriangleright \mathbb{E}[\|G_k\|_2^2 | \mathcal{F}_k] \le M + M_{\nabla f} \|\nabla f(X_k)\|_2^2$

By Lipschtiz continuity of ∇f and construction of the algorithm, one finds

$$f(X_{k+1}) - f(X_k) \leq \nabla f(X_k)^T (X_{k+1} - X_k) + \frac{1}{2}L \|X_{k+1} - X_k\|_2^2$$

$$= -\alpha_k \nabla f(X_k)^T G_k + \frac{1}{2}\alpha_k^2 L \|G_k\|_2^2$$

$$\implies \mathbb{E}[f(X_{k+1})|\mathcal{F}_k] - f(X_k) \leq -\alpha_k \|\nabla f(X_k)\|_2^2 + \frac{1}{2}\alpha_k^2 L \mathbb{E}[\|G_k\|_2^2|\mathcal{F}_k]$$

$$\leq -\alpha_k \|\nabla f(X_k)\|_2^2 + \frac{1}{2}\alpha_k^2 L (M + M_{\nabla f} \|\nabla f(X_k)\|_2^2),$$

where the last inequalities follow by the assumption and since $f(X_k)$ and $\nabla f(X_k)$ are \mathcal{F}_k -measurable.

	Stochastic Processes 00000	Stochastic Gradient Method $00000 \bullet$	Stochastic Methods with Adaptive Parameters	Conclusion 000
--	-------------------------------	--	---	-------------------

SG theory

Taking total expectation, one arrives at

$$\mathbb{E}[f(X_{k+1}) - f(X_k)] \le -\alpha_k (1 - \frac{1}{2}\alpha_k L M_{\nabla f}) \mathbb{E}[\|\nabla f(X_k)\|_2^2] + \frac{1}{2}\alpha_k^2 L M$$

Theorem

$$\begin{aligned} \alpha_k &= \frac{1}{LM_{\nabla f}} &\implies \mathbb{E}\left[\frac{1}{k}\sum_{j=1}^k \|\nabla f(X_j)\|_2^2\right] \le M_k \xrightarrow{k \to \infty} \mathcal{O}\left(\frac{M}{M_{\nabla f}}\right) \\ \alpha_k &= \Theta\left(\frac{1}{k}\right) &\implies \mathbb{E}\left[\frac{1}{\left(\sum_{j=1}^k \alpha_j\right)}\sum_{j=1}^k \alpha_j \|\nabla f(X_j)\|_2^2\right] \to 0 \\ &\implies \liminf_{k \to \infty} \mathbb{E}[\|\nabla f(X_k)\|_2^2] = 0 \\ (further steps) \quad and \quad \nabla f(X_k) \to \infty \ almost \ surely. \end{aligned}$$

Stochastic Processes

Stochastic Gradient Method

Stochastic Methods with Adaptive Parameters

Sequential quadratic optimization (SQP)

 $\operatorname{Consider}$

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$

with $J \equiv \nabla c$ and H positive definite over Null(J), either viewpoint

$$\boxed{\begin{bmatrix} \nabla f(x) + J(x)^T y \\ c(x) \end{bmatrix}} = 0 \quad \text{or} \quad \boxed{\min_{d \in \mathbb{R}^n} f(x) + \nabla f(x)^T d + \frac{1}{2} d^T H d}_{\text{s.t. } c(x) + J(x) d = 0}$$

leads to the same "Newton-SQP system"

$$\begin{bmatrix} H_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ y_k \end{bmatrix} = - \begin{bmatrix} \nabla f(x_k) \\ c_k \end{bmatrix}$$

	Stochastic Processes 00000	Stochastic Gradient Method 000000	Stochastic Methods with Adaptive Parameters 0000000
--	-------------------------------	--------------------------------------	---

Conclusion 000

Stochastic SQP

Algorithm guided by merit function with adaptive parameter τ defined by

 $\phi(x,\tau) = \tau f(x) + \|c(x)\|_1$

Algorithm : Stochastic SQP

- 1: choose $x_1 \in \mathbb{R}^n$, $\tau_0 \in (0, \infty)$, $\{\beta_k\} \in (0, 1]^{\mathbb{N}}$
- 2: for $k \in \{1, 2, \dots\}$ do
- 3: compute step: solve

$$\begin{bmatrix} H_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ y_k \end{bmatrix} = - \begin{bmatrix} g_k \\ c_k \end{bmatrix}$$

4: update merit parameter: set τ_k to ensure

$$\phi'(x_k, \tau_k, d_k) \le -\Delta q(x_k, \tau_k, g_k, d_k) \ll 0$$

5: compute step size: set

$$\alpha_k = \Theta\left(\frac{\beta_k \tau_k}{\tau_k L_{\nabla f} + L_{\nabla c}}\right)$$

6: then $x_{k+1} \leftarrow x_k + \alpha_k d_k$ 7: end for

Deterministic vs. stochastic setting

Convergence analysis hinges on the behavior of the sequence $\{\mathcal{T}_k\}$.

Deterministic setting under nice function assumptions:

- ▶ $\tau_k = \tau_{\min}$ for all $k \ge k_{\min}$ for some $\tau_{\min} \in (0, \infty)$ and $k_{\min} \in \mathbb{N}$.
- ▶ Note, however, that (τ_{\min}, k_{\min}) is NOT knowable *a priori* and depends on x_1 .

Stochastic setting under nice *function* assumptions, but general *noise* assumptions:

- $E_{\text{big}} := \{\{\mathcal{T}_k\} \text{ decreases, but not enough}\}$
- $E_{\text{good}} := \{\{\mathcal{T}_k\} \text{ decreases sufficiently and does not vanish to zero}\}$
- $E_{\text{zero}} := \{\{\mathcal{T}_k\} \text{ vanishes to zero}\}$

Even the good case is not straightforward!

▶ Imagine a sequence of events in E_{good} over which $k_{\min} \to \infty$.

Assumptions that are reasonable?

Need to have an honest discussion in the community about what assumptions are reasonable.

Prove probability of events E_{big} , E_{good} , and E_{zero} ?

- Seems quite impossible in the general nonconvex landscape.
- ▶ If this means that we abandon certain settings/algorithms, that's a shame.

 $E_{\text{big}} \cup E_{\text{good}}$ essentially requires bounded noise.

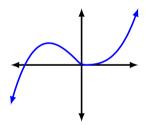
- Enough to focus on bounded noise over a finite number of iterations?
- ▶ Enough to focus on the event that the noise remains bounded (over infinite iterations)?

Stochastic Processes 00000	Stochastic Gradient Method 000000	Stochastic Methods with Adaptive Parameters 0000000	Conclusion 000
			/

Reality check

Note that even in the deterministic setting, some assumptions can be unreasonable.

▶ The merit function for $\min_{x \in \mathbb{R}} x^3$ s.t. $x \ge 0$ is not bounded below.



▶ People understand that in practice certain safeguards can be incorporated. For other stochastic algorithms, noise assumptions are not verifiable in practice.

▶ For example, probabilistic guarantee of certain accuracy.

Stochastic Processes	Stochastic Gradient Method	Stochastic Methods with Adaptive Parameters $000000 \bullet$	Conclusion
00000	000000		000

Proposal

My feeling is that it should be considered sufficient to analyze the algorithm under reasonable events, e.g.,

$$E := E(\tau_{\min}, k_{\min}) := \{\mathcal{T}_k = \mathcal{T} \text{ for sufficiently small } \mathcal{T} \in [\tau_{\min}, \infty) \text{ for all } k \ge k_{\min} \}.$$

(Recall that $\{\tau_k\}$ can be bounded below in deterministic setting, although k_{\min} not known.)

For the purposes of analysis, this involves focusing on the trace σ -algbra $\mathcal{G} := \mathcal{F} \cap \{E\}$.

▶ Redefine the sequence of sub- σ -algebras as $\{\mathcal{G}_k\}$, where

 $\mathcal{G}_k := \mathcal{F}_k \cap \{E\} \text{ for all } k \in \mathbb{N}.$

▶ Key: The macroparameter $\mathcal{T} \geq \tau_{\min}$ is $\mathcal{G}_{k_{\min}}$ -measurable.

Stochastic Processes

Stochastic Gradient Method

Stochastic Methods with Adaptive Parameters

Summary

Discussed procedures for analyzing stochastic algorithms for smooth nonconvex optimization.

- Each realization of the algorithm corresponds to a draw from $\Omega = \Gamma \times \Gamma \times \Gamma \times \cdots$.
- Step-by-step analysis conducted with sequence of sub- σ -algebras $\{\mathcal{F}_k\}$.

Algorithms with random *macroparameters* cannot satisfy idealized assumptions.

- ▶ Need to consider what assumptions are reasonable in practice
- ... or else we throw out the baby (good algorithms)
- ▶ ... with the bath water (unreasonable demands for analysis)!

Stochastic Gradient Method 000000

Collaborators and references

- A. S. Berahas, F. E. Curtis, D. P. Robinson, and B. Zhou, "Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization," SIAM Journal on Optimization, 31(2):1352–1379, 2021.
- A. S. Berahas, F. E. Curtis, M. J. O'Neill, and D. P. Robinson, "A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear Equality Constrained Optimization with Rank-Deficient Jacobians," https://arxiv.org/abs/2106.13015.
- F. E. Curtis, D. P. Robinson, and B. Zhou, "Inexact Sequential Quadratic Optimization for Minimizing a Stochastic Objective Subject to Deterministic Nonlinear Equality Constraints," https://arxiv.org/abs/2107.03512.
- F. E. Curtis, M. J. O'Neill, and D. P. Robinson, "Worst-Case Complexity of an SQP Method for Nonlinear Equality Constrained Stochastic Optimization," *Mathematical Programming* (online).
- F. E. Curtis, S. Liu, and D. P. Robinson, "Fair Machine Learning through Constrained Stochastic Optimization and an ε-Constraint Method," Optimization Letters (online).
- F. E. Curtis, D. P. Robinson, and B. Zhou, "Sequential Quadratic Optimization for Stochastic Optimization with Deterministic Nonlinear Inequality and Equality Constraints," https://arxiv.org/abs/2302.14790.
- F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, "A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems," https://arxiv.org/abs/2304.14907.
- F. E. Curtis, X. Jiang, and Q. Wang, "Almost-sure convergence of iterates and multipliers in stochastic sequential quadratic optimization," https://arxiv.org/abs/2308.03687.