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Optimization problem formulations

min
x∈Rn

f(x)

with f : Rn → R where

▶ f(x) = Eω [F (x, ω)]

▶ ω has probability space (Ω,Fω ,Pω)

▶ F : Rn × Ω→ R
▶ Eω [·] denotes expectation w.r.t. Pω

min
x∈Rn

f(x) s.t. c(x) ≤ 0

with f : Rn → R and c : Rn → Rm where

▶ ξ has probability space (Ξ,Fξ,Pξ) and

▶ c(x) = Eξ[C(x, ξ)] or

▶ c(x) = α− Pξ[C(x, ξ) ≤ 0] or

▶ c(x) = [C(x, ξ)]ξ∈D
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Motivation: Physics-informed learning (e.g., PINNs)

Photo: Karniadakis et al.
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Motivation: Fair learning

Let

▶ Y be a feature vector

▶ A be a sensitive feature vector

▶ Z be the output/label

and consider

min
x∈Rn

E(Y,A,Z)

ℓ
ϕ

(
x,

[
Y
A

])
︸ ︷︷ ︸

Ẑ

, Z


 .

This loss might not be fair between subgroups in the population.

▶ Various criteria related to fairness (e.g., demographic parity, equalized odds, equalized opportunity)
leading to various measures (e.g., accuracy equality, disparate impact, measures conditioned on
outcome, measures conditioned on prediction)

▶ For example, in binary classification, disparate impact asks for the following constraints to hold:

P[Ẑ = z|A = 1] = P[Ẑ = z|A = 0] for each z ∈ {−1, 1}
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Regularized optimization

The typical approach for “informed optimization” is regularization (to avoid constraints)

min
x∈Rn

f(x) + r(x), where f(x) = Eω [F (x, ω)],

where r : Rn × R is often convex and potentially nonsmooth, but this can be computationally expensive
(due to need to tune hyperparameters), especially to achieve exact satisfaction

Our approach (as a stepping stone to tackling more difficult settings) is to consider

min
x∈Rn

f(x), where f(x) = Eω [F (x, ω)]

s.t. cE(x) = 0

cI(x) ≤ 0
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Stochastic gradient (not descent) method

Algorithm SG : Stochastic Gradient

1: choose an initial point x1 ∈ Rn and step sizes {αk} ⊂ R>0
2: for all k ∈ N do
3: set xk+1 ← xk − αkgk, where gk ≈ ∇f(xk)
4: end for

Formally, {(xk, gk)} is a realization of the stochastic process {(Xk, Gk)}, where

▶ F1 = σ(x1) and, for k ≥ 2, Fk is the σ-algebra generated by {G1, . . . , Gk−1}
▶ (for simplicity) E[Gk|Fk] = ∇f(Xk) and E[∥Gk −∇f(Xk)∥22|Fk] ≤M

The algorithm achieves eventual descent in expectation with appropriate step-size selection:

f(Xk+1)− f(Xk) ≤ ∇f(Xk)
T (Xk+1 −Xk) +

1
2
L∥Xk+1 −Xk∥22

= −αk∇f(Xk)
TGk + 1

2
α2
kL∥Gk∥22

=⇒ Eω [f(Xk+1)|Fk]− f(Xk) ≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kLEω [∥Gk∥22|Fk].
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Adaptive stochastic gradient method

This method can be made adaptive in various ways

▶ step-size selection

▶ scaling matrix

▶ error in gradient estimator

That said, in the fully stochastic regime, the convergence driver boils down to the same thing.
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SG theory

Theorem SG

Since E[Gk|Fk] = ∇f(Xk) and E[∥Gk −∇f(Xk)∥22|Fk] ≤M for all k ∈ N:

αk =
1

L
=⇒ E

 1

k

k∑
j=1

∥∇f(Xj)∥22

 = O(M)

αk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 αj

) k∑
j=1

αj∥∇f(Xj)∥22

→ 0

and {∇f(Xk)} → 0 almost surely
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Sequential quadratic optimization (SQP)

Consider

min
x∈Rn

f(x)

s.t. c(x) = 0

with J ≡ ∇c and H positive definite over Null(J), two viewpoints:

[
∇f(x) + J(x)T y

c(x)

]
= 0 or

min
d∈Rn

f(x) +∇f(x)T d+ 1
2
dTHd

s.t. c(x) + J(x)d = 0

both leading to the same “Newton-SQP system”:[
Hk JT

k
Jk 0

] [
dk
yk

]
= −

[
∇f(xk)

ck

]
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SQP illustration

Figure: Illustrations of SQP subproblem solutions
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SQP with prescribed step-size rule
Algorithm guided by merit function with adaptive parameter τ defined by

ϕ(x, τ) = τf(x) + ∥c(x)∥1

Algorithm : SQP w/ prescribed step-size rule (Berahas et al., 2021)

1: choose x1 ∈ Rn, τ0 ∈ R>0, η ∈ (0, 1)
2: for k ∈ {1, 2, . . . } do
3: compute step: solve [

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
∇f(xk)

ck

]
4: update merit parameter: set τk ≤ τk−1 to ensure

ϕ′(xk, τk, dk) ≤ −∆l(xk, τk,∇f(xk), dk)≪ 0

5: compute step size: set xk+1 ← xk + αkdk where, for sufficiently small βk ∈ R>0,

αk ←
2(1− η)βkτk

τkL+ Γ

6: end for
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Convergence theory

Assumption 2

▶ f , c, ∇f , and J bounded and Lipschitz

▶ singular values of J bounded below (i.e., the LICQ)

▶ uTHku ≥ ζ∥u∥22 for all u ∈ Null(Jk) for all k ∈ N

Theorem

▶ {αk} ≥ αmin for some αmin > 0

▶ {τk} ≥ τmin for some τmin > 0

▶ ∆l(xk, τk,∇f(xk), dk)→ 0 implies optimality error vanishes, specifically,

∥dk∥2 → 0, ∥ck∥2 → 0, ∥∇f(xk) + JT
k yk∥2 → 0
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Stochastic SQP with adaptive step sizes

Algorithm : Stochastic SQP

1: choose x1 ∈ Rn, τ0 ∈ R>0, η ∈ (0, 1)

2: for k ∈ {1, 2, . . . } do
3: compute step: solve [

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
4: update merit parameter: set τk ≤ τk−1 to ensure

ϕ
′
(xk, τk, dk) ≤ −∆l(xk, τk, gk, dk)≪ 0

5: compute adaptive step-size bound: set α̃k as the largest value of α ∈ R≥0 such that

0 ≥ φk(α) = (η − 1)αβk∆l(xk, τk, gk, dk) + ∥ck + α∇c(xk)
T
dk∥2

− ∥ck∥2 + α(∥ck∥2 − ∥ck +∇c(xk)
T
dk∥2) + 1

2
(τkL + Γ)α

2∥dk∥
2
2

6: compute step size: set xk+1 ← xk + αkdk where, for sufficiently small βk ∈ R>0,

αk ∈ [αk,min, αk,max], with αk,min ←
2(1− η)βkτk

τkL + Γ

αk,max ← min{α̃k, αk,min + θβ
2
k}

7: end for
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Numerical results: (Matlab) https://github.com/frankecurtis/StochasticSQP
CUTE problems with noise added to gradients with different noise levels

▶ StochasticSQP vs. stochastic subgradient method

Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Fundamental lemma

Recall in the unconstrained setting that

Eω [f(Xk+1)|Fk]− f(Xk) ≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kLEω [∥Gk∥22|Fk]

Lemma

For all k ∈ N one finds (before taking expectations)

ϕ(Xk+1, Tk+1) − ϕ(Xk, Tk)

≤ −Ak∆l(Xk, Tk,∇f(Xk), D
true
k )︸ ︷︷ ︸

O(βk), “deterministic”

+ 1
2Akβk∆l(Xk, Tk, Gk, Dk)︸ ︷︷ ︸

O(β2
k
), stochastic/noise

+AkTk∇f(Xk)
T
(Dk − D

true
k )︸ ︷︷ ︸

due to adaptive Ak
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Good merit parameter behavior

Lemma

Let E := event that {Tk} eventually remains constant at T ′ ≥ τmin > 0. Then, for large k,

Eω [AkTk∇f(Xk)
T (Dk −Dtrue

k )|Fk ∩ E] = β2
kT
′O(
√
M)

Theorem

Conditioned on E, one finds

βk = Θ(1) =⇒ E

 1

k

k∑
j=1

(∥∇f(Xj) +∇c(Xj)
TY true

j ∥2 + ∥c(Xj)∥2)

 = O(M)

βk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 βj

) k∑
j=1

βj(∥∇f(Xj) +∇c(Xj)
TY true

j ∥2 + ∥c(Xj)∥2)

→ 0
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Lagrange multiplier convergence

How about convergence of the Lagrange multiplier sequence?

▶ The prior theorem considers the true multplier that we do not compute.

▶ The last multiplier is always subject to error.

If the primal iterates do not converge, then is there hope of anything?

We (upcoming paper with Xin Jiang and Qi Wang) have conditions under which

▶ the stationarity measure and primal iterates converge almost surely (like for SG), and

▶ correspondingly, an averaged multiplier sequence converges almost surely.

A consequence of the martingale central limit theorem.
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Main challenges of adaptivity

Adaptivity, such as that for step sizes, is one type of challenge.

▶ As long as parameter sequences are prescribed, or at least controlled by prescribed sequences, then
convergence can be guaranteed, perhaps with some additional steps.

▶ We have accomplished this as well in the context of an interior-point method.

Adaptivity of quantities such as the merit parameter is another type of (huge) challenge.

▶ The function that the algorithm is minimizing is changing during the optimization.

▶ Algorithmic behavior is not determined solely by the initial conditions.

I will outline our approach for handling this challenge in the context of proving a worst-case complexity.
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SQP with prescribed step-size rule
First, recall the deterministic algorithm:

Algorithm : SQP w/ prescribed step-size rule (Berahas et al., 2021)

1: choose x1 ∈ Rn, τ0 ∈ R>0, η ∈ (0, 1)
2: for k ∈ {1, 2, . . . } do
3: compute step: solve [

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
∇f(xk)

ck

]
4: update merit parameter: set τk ≤ τk−1 to ensure

ϕ′(xk, τk, dk) ≤ −∆l(xk, τk,∇f(xk), dk)≪ 0

5: compute step size: set xk+1 ← xk + αkdk where, for sufficiently small βk ∈ R>0,

αk ←
2(1− η)βkτk

τkL+ Γ

6: end for
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Complexity of deterministic algorithm

All reductions in the merit function can be cast in terms of smallest τ .

Lemma

Under standard assumptions, {τk} eventually remains fixed at sufficiently small τmin. In addition, for any
ϵ ∈ (0, 1) there exists (κ1, κ2) ∈ (0,∞)× (0,∞) such that, for all k,

∥∇f(xk) + JT
k yk∥ > ϵ or

√
∥ck∥1 > ϵ =⇒ ∆l(xk, τk,∇f(xk), dk) ≥ min{κ1, κ2τmin}ϵ.

Since τmin is determined by the initial point, it will be reached.

Theorem

For any ϵ ∈ (0, 1), there exists (κ1, κ2) ∈ (0,∞)× (0,∞) such that ∥∇f(xk) + JT
k yk∥ ≤ ϵ and

√
∥ck∥1 ≤ ϵ

in a number of iterations no more than(
τ−1(f0 − finf) + ∥c0∥1

min{κ1, κ2τmin}

)
ϵ−2.
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Challenge in the stochastic setting

We are minimizing a function that is changing during the optimization.

xk

xk + αkd(xk,∇f(xk))xk + αkd(xk, g
1
k) xk + αkd(xk, g

2
k)

final T ≫ 0 final T ≈ 0
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Challenge in the stochastic setting

In the stochastic setting, minimum T is not determined by the initial point.

▶ Even if we assume Tk ≥ τmin > 0 for all k in any realization, the final T is not determined.

▶ This means we cannot cast all reductions in terms of some fixed constant τ .

k

Tk
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Our approach

In fact, T reaching some minimum value is not necessary.

▶ Important: Diminishing probability of continued imbalance between “true” merit parameter update
and “stochastic” merit parameter update.

▶ In iteration k, the algorithm has obtained the merit parameter value Tk−1.

▶ If the true gradient is computed, then one obtains T trial,true
k .

Lemma

Suppose that the merit parameter is reduced at most smax times. For any δ ∈ (0, 1), one finds that

P
[
|{k : T trial,true

k < Tk−1}| ≤
⌈
ℓ(smax, δ)

p

⌉]
≥ 1− δ,

where p ∈ (0, 1) (related to a bounded imbalance assumption we make) and

ℓ(smax, δ) := smax + log(1/δ) +
√

log(1/δ)2 + 2smax log(1/δ) > 0.
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Chernoff bound

How do we get there?

Lemma (Chernoff bound, multiplicative form)

Let {Y0, . . . , Yk} be independent Bernoulli random variables. Then, for any smax ∈ N and δ ∈ (0, 1),

k∑
j=0

P[Yj = 1] ≥ ℓ(smax, δ) =⇒ P

 k∑
j=0

Yj ≤ smax

 ≤ δ.

We construct a tree whose nodes are signatures of possible runs of the algorithm.

▶ A realization {g0, . . . , gk} belongs to a node if and only if a certain number of decreases of T have
occurred and the probability of decrease in the current iteration is in a given closed/open interval.

▶ Bad leaves are those when the probability of decrease has accumulated beyond a threshold, yet the
merit parameter has not been decreased sufficiently often.

▶ Along the way, we apply a Chernoff bound on a carefully constructed set of (independent Bernoulli)
random variables to bound probabilities associated with bad leaves.
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Node definition

Let [k] := {0, 1, . . . , k} and define

▶ p[k] = probabilities of merit parameter decreases

▶ w[k] = counter of merit parameter decreases

Then, define nodes of the tree according to

G[k−1] ∈ N(p[k], w[k])

if and only if

G[k−2] ∈ N(p[k−1], w[k−1])

P[Tk < Tk−1|Fk] ∈ ι(pk)

k−1∑
i=1

1[Ti < Ti−1] = wk
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Visualization

G[−1] ∈ N(p[0], w[0])

k∑
i=0

pi small and k = kmax

k∑
i=0

pi small and wk = smax

k∑
i=0

pi too large
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Worst-case iteration complexity of Õ(ϵ−4)

Theorem

Suppose the algorithm is run kmax iterations with βk = γ/
√
kmax + 1 and

▶ the merit parameter is reduced at most smax ∈ {0, 1, . . . , kmax} times.

Let k∗ be sampled uniformly over {1, . . . , kmax}. Then, with probability 1− δ,

E[∥∇f(Xk∗ ) + J(Xk∗ )
TYk∗∥

2
2 + ∥c(Xk∗ )∥1] ≤

τ−1(f0 − finf) + ∥c0∥1 +M
√
kmax + 1

+
(τ−1 − τmin)(smax log(kmax) + log(1/δ))

√
kmax + 1

Theorem

If the stochastic gradient estimates are sub-Gaussian, then with probabiliy 1− δ̄

smax = O
(
log

(
log

(
kmax

δ̄

)))
.
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Summary

Considering stochastic-gradient-based algorithms for solving problems of the form:

min
x∈Rn

f(x), where f(x) = Eω [F (x, ω)]

s.t. cE(x) = 0

cI(x) ≤ 0

In terms of the design of adaptive stochastic algorithms, solving constrained problems presents

▶ new opportunities

▶ additional challenges

We have a framework for analyzing stochastic algorithms with adaptive algorithmic parameters

▶ used to analyze the worst-case complexity of a stochastic SQP algorithm

▶ results showing that the complexity is on par with the unconstrained setting
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