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Talks at ICCOPT

Wednesday, 10:25am-11:45am, Rauch 241

» Baoyu Zhou, “SQP Methods for Inequality Constrained Stochastic
Optimization”

» Raghu Bollapragada, “Adaptive Sampling Stochastic Sequential Quadratic
Programming”

» Jiahao Shi, “Accelerating Sequential Quadratic Programming for Equality
Constrained Stochastic Optimization using Predictive Variance Reduction”
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Constrained optimization (deterministic)

Consider
2 @
st. cg(z) =0
cz(z) <0

where f: R™ = R, cg : R® — R™¢€ and ¢z : R™ — R™Z are smooth
> Physics-constrained, resource-constrained, etc.
» Long history of algorithms (penalty, SQP, interior-point, etc.)
» Comprehensive theory (even with lack of constraint qualifications)
» Effective software (Ipopt, Knitro, LOQO, etc.)
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Constrained optimization (stochastic constraints)

Consider

2 S @

st.cg(z) =0
cz(z,w) S0

where f: R™ - R, cg : R® — R™¢€ and ¢z : R x 2 — R™Z

» Various modeling paradigms:

> ...stochastic optimization
> ... (distributionally) robust optimization
> ...chance-constrained optimization

I
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Constrained optimization (stochastic objective)

Consider

min f(x) =E[F(z,w)]

s.t. cg(z) =0
cz(z) <0

where f:R" xR, F: R" x Q - R, cg : R - R™¢ and ¢z : R™® — R™Z

> w has probability space (Q2, F, P)

» E[-] with respect to P

» Classical applications under uncertainty, constrained DNN training, etc.
> Besides cases involving a deterministic equivalent...
>

. very few algorithms so far (mostly penalty methods)
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What kind of algorithm do we want?

Need to establish what we want/expect from an algorithm.
Note: We are interested in the fully stochastic regime.

We assume:
> Feasible methods are not tractable
> ... so no projection methods, Frank-Wolfe, etc.
> “T'wo-phase” methods are not effective
> ... so should not search for feasibility, then optimize.
> Only enforce convergence in expectation.

Finally, want to use techniques that can generalize to diverse settings.

T Alternatively, see Na, Anitescu, Kolar (2021, 2022)
| |
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This talk

Consider equality constrained stochastic optimization:

min f(z) = E[F(z,w)]

st cg(z) =0

v

Adaptive SQP method for deterministic setting
Stochastic SQP method for stochastic setting

v

» Convergence in expection (comparable to SG for unconstrained setting)
» Worst-case complexity on par with stochastic subgradient method

» Numerical experiments are very promising
>

Various open questions!
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Stochastic gradient method (SG)

Invented by Herbert Robbins and Sutton Monro (1951)

Sutton Monro, former Lehigh faculty member

I I
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Stochastic gradient (not descent)

Consider the stochastic optimization problem

min f(2) = E[F(z,w)

where Vf : R™ — R™ is Lipschitz continuous with constant L

Algorithm SG : Stochastic Gradient
1: choose an initial point g € R™ and step sizes {ay} > 0
2: for k € {0,1,2,...} do
3: set Tpq1 < Tk —agr, where Ex[gi] = V f(zy) and Ex[|lgr — V f(z1)]|3] < M
4: end for

Not a descent method! ...but eventual descent in expectation:

f@rg1) = f@e) < V@) @rp1 — 2x) + 5 Llaer — 23
—oxVf(zi) gr + 2oi Lllgkll3
= Exlf(zr4+1)] — f(zr) < —arlVF(zp)l3 + Soi LEk||gx|3]-

Markovian: x4 depends only on zj; and random choice at iteration k.

I I
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SG theory

Theorem SG
Since Ex[gk] = V f(xx) and Ex[|lgr — Vf(zx)|3] < M for all k € N:

k

1 1
=1 — E | S IVi@)I3| <o)
j=1
1 1 k
ax = © (z) — E|———— > oy IVi@)I3| =0

k
( j=1 O‘j) j=1

— liminf E[“Vf(xk)”%] =0
k— o0

I I
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Stochastic SQP Extensions

Conclusion

Sequential quadratic optimization (SQP)

Consider

min f(z)

zE€R™
s.t. c(z) =0

with J = Ve and H > 0 (for simplicity), two viewpoints:

V(@) +J(x)Ty
c(z)

]:0 or

. T, 1T
Juin, f(x)+Vf(x)' d+ 5d" Hd

s.t. ¢(z) + J(z)d =0

both leading to the same “Newton-SQP system”:

|

Hy, Jr
Je O

Yk Ck

-5
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SQP

> Algorithm guided by merit function, with adaptive parameter 7, defined by
¢z, 7) = 7f(x) + [lc(@) [l
a model of which is defined as
a(z, 7,V f(z),d) = 7(f(z) + Vf(2)d+ 3d" Hd) + ||e() + J (z)d||1
> For a given d € R™ satisfying c(z) + J(z)d = 0, the reduction in this model is
Aq(x, 7,V f(@),d) = —7(Vf(2)"d + 5d" Hd) + [[e()|1,
and it is easily shown that

¢’ (z,7,d) < —Aq(z, 7,V f(z),d)

I I
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SQP with backtracking line search

Algorithm SQP-B
1: choose g € R™, 71 € R, (, 0 € (0,1), n € (0,1)
2: for k€ {0,1,2,...} do
3: solve
IR
Jg o 0] lyk Ck
4: set T to ensure Ag(xk, 7k, Vf(zk), dr) > 0, offered by

(1 —9)llexllr

T if Vf(xr)Tdy +dL Hedy >0
"= V() Tdy + d] Hydi Flaw)"di + dic Hid

5: backtracking line search to ensure x4 1 < = + ardy yields

A(Trt1,7r) < STk, k) — NarAq(zr, 7, V f(2r), di)

6: end for

I I
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SQP with adaptive step sizes

Algorithm SQP-A

1: choose g € R™, 7_1 € Ry, 0 € (0,1), n € (0,1)
2: for k € {0,1,2,...} do

3: solve
5 -
Ji 0 Yk Ck
4: set T to ensure Ag(xy, Tk, Vf(zk),dr) > 0, offered by
A —oa)llekll T T
T if Vf(z dy +dj, Hidy >0
kS G f(en)Tdy + dT Hydy, f@r)” di + dj Hidg
5 set
2(1 = n)Aq(zg, 7, VF(2k), di)
Qg 5 and
(ke Lie + i) ldic 113
e a allexlls
k k= T T o g2
(T Lk + Tr)lldi I3
6: set
ap ifap <1
ap <1 if ap <1< ag
ap ifap >1
7 set 11 < xp + apdy and continue or update Ly and/or I'y; and return to step 5
8: end for
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Convergence theory

Assumption
> f,c, Vf, and J bounded and Lipschitz
> singular values of J bounded below (i.e., the LICQ)
» T Hyu > ¢||ul|3 for all w € Null(Jy) for allk € N

Theorem SQP-B

> {ar} > amin for some amin > 0
> {7k} > Tmin for some Tmin >0
> Aq(xk, T, Vf(2k),dr) — 0 implies

lldillz = 0, llexllz = 0, IVf(zk) + JLyxllz =0

I I
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Outline

Stochastic SQP
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Stochastic setting

Consider the stochastic problem:

min f(z) =E[F(z,w)]

s.t. c(z) =0

Let us assume only the following:

Assumption

For all k € N, one can compute g with

Eklgr] = Vf(zx) and Billlgs — VF(z)3] < M

Search directions computed by:

e BB L

Important: Given g, the values (cg, Ji, Hx) are determined

Algorithms for Deterministically Constrained Stochastic Optimization 21 of 33
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Stochastic SQP with adaptive step sizes

(For simplicity, assume Lipschitz constants L and I' are known.)

Algorithm : Stochastic SQP

1: choose zg € R™, 7_1 € Rygs 0 € (0,1), {Br} € (0,1]
2: for k € {0,1,2,...} do

3: solve
Hy I [de] — _ [ox
JE 0 Yk Ck
4: set T to ensure Ag(zy, Tk, gk, di) > 0, offered by
(1 —o)llekllr T T
T < = if gpdp +dp Hpydp >0
g dy + dF Hydy,
5 set
~ BrAq(xg, Tk, k> k)
ayg —
(T L + D)l di |13
sy el
(e L + )l dg I3
6 set
ap ifap <1
ap <1 if ap <1< ag
ap ifap >1
7 set Ty — Tp + apdy
8: end for
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Good merit parameter behavior

Lemma
For all k € N, for any realization of gi, one finds
d(zp + apdy, 7)) — ¢(Tk, k)

< —apAq(ag, T, V() di %) + Lo B Aa(zr, Thy gk, di) + oo V() T (dg — di70)

O(Bg), “deterministic” O(ﬁ%),stochastic/noise due to adaptive o

Theorem

If {m1} eventually remains fized at sufficiently small Tmin > 0, then for large k

k
1
Br=0(1) = E | Ad(j, Tmin, Vf(5),d5™) | < O(M)
Jj=1

k
'B’“:@(%> = E ;ZﬁjAQ(xjaTminavf(xj),d;'rue) =0

( o1 5;‘) =1

I I
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Good merit parameter behavior

Lemma
For all k € N, for any realization of gi, one finds
d(zp + apdy, 7)) — ¢(Tk, k)
true 1 T true
< —aplAq(zk, Tk, V(zg), dy ) + 3opBrAe(@g, Th, ks di) T o TV f(zg) " (d —di ™)

O(Bg), “deterministic” O(ﬁ%),stochastic/noise due to adaptive ac,

Theorem

If {m1} eventually remains fized at sufficiently small Tmin > 0, then for large k

k

> Ulgs + 7 g5 ll2 + llegll2) | < O(M)
Jj=1

Br=06(1) =

?rl'—‘

k
Bu=0 ( Z (g5 + IT55" 12 + llesll2) | = 0

] 153 Jj=1
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Numerical results
Matlab software: https://github.com/frankecurtis/StochasticSQP
CUTE problems with noise added to gradients with different noise levels
» Stochastic SQP: 102 iterations

> Stochastic Subgradient: 104 iterations and tuned over 11 values of T
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Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Outline

Extensions
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Complexity of deterministic algorithm

All reductions in the merit function can be cast in terms of smallest 7.

Lemma 5

If {1} eventually remains fized at sufficiently small Tmin, then for any e € (0,1)
there exists (k1,k2) € (0,00) X (0,00) such that, for all k,

IV f(xr) + Tyl > € or ekl > e = Aq(xk, Tk, dx) > min{s1, K2Tmin }e.

Since Tmin is determined by the initial point, it will be reached.

Theorem 6

For any € € (0,1), there exists (k1,k2) € (0,00) X (0,00) such that
IV £ (@) + i yell < € and V/lexlr < €

in a number of iterations no more than

(T—l(fo — finf) + ||60||1> =

min{K1, K2Tmin }

I I
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Worst-case iteration complexity of (5(6_4)

Theorem 7

Suppose the algorithm is run
> kmax iterations with
> Br =7/Vkmax + 1 and
> the merit parameter is reduced at most Smax € {0,1,...,kmax} times.

Let k« be sampled uniformly over {1,...,kmax}. Then, with probability 1 — 4,

7—1(fo — fint) + llcolls + M
VEmax + 1
- (T=1 — Tmin)(Smax log(kmax) + log(1/4))
VEkmax + 1

Elllgr. + Ji, vk 113 + llex. 1] <

Theorem 8

If the stochastic gradient estimates are sub-Gaussian, then w.p. 1 —§

s = (1ol (2) ).

I I
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Recent work (under review): No LICQ

Remove constraint qualification
> infeasible and/or degenerate problems

» step decomposition method

10* 10*
[ Stochastic SQP Stochastic SQP
* [ Stochastic Subgradient % T Stochastic Subgradient
2 2
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10f 10! =
e 1 | f 1
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Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Matrix-free algorithm

Solving for the search directions can be expensive:

CRIIAE
Jg o 0] lyk Ck
To avoid direct+exact solves,

> aim to use iterative solver(s) and

> allow inexactness in the subproblem solves.

Algorithm now involves both stochasticity and inezactness.
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Results on CUTESst problems

10" 10*
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Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Summary

Consider equality constrained stochastic optimization:

znelllRI}L f(z) = E[F(z,w)]

s.t. cg(x) =0

Adaptive SQP method for deterministic setting
Stochastic SQP method for stochastic setting

Convergence in expection (comparable to SG for unconstrained setting)

Yy vV VY

Worst-case complexity on par with stochastic subgradient method

v

Numerical experiments are very promising

v

Various extensions (on-going)
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