Overview

SQP for Equality Constrained Stochastic Optimization

Frank E. Curtis, Lehigh University

joint work with

Albert Berahas, University of Michigan Daniel P. Robinson, Lehigh University Baoyu Zhou, Lehigh University

presented at

INFORMS Annual Meeting

November 13, 2020

References

Overview

"Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization" https://arxiv.org/abs/2007.10525.

Outline

Overview

SG and SQP

Adaptive (Deterministic) SQP

Stochastic SQP

Conclusion

Stochastic SQP

Outline

Overview

Overview

Constrained stochastic optimization

Consider

Overview

$$\min_{x \in \mathbb{R}^n} f(x) \equiv \mathbb{E}[F(x, \omega)]$$
s.t. $c_{\mathcal{E}}(x) = 0$

$$c_{\mathcal{I}}(x) \le 0$$

where $f: \mathbb{R}^n \times \mathbb{R}, F: \mathbb{R}^n \times \Omega \to \mathbb{R}, c_{\mathcal{E}}: \mathbb{R}^n \to \mathbb{R}^{m_{\mathcal{E}}}, \text{ and } c_{\mathcal{I}}: \mathbb{R}^n \to \mathbb{R}^{m_{\mathcal{I}}}$

- $\triangleright \omega$ has probability space (Ω, \mathcal{F}, P)
- $ightharpoonup \mathbb{E}[\cdot]$ with respect to P
- ▶ Classical applications with objective uncertainty, constrained DNNs, etc.
- Very few algorithms so far (mostly penalty methods)

Contributions

Overview

Consider equality constrained stochastic optimization:

$$\min_{x \in \mathbb{R}^n} f(x) \equiv \mathbb{E}[F(x, \omega)]$$
s.t. $c(x) = 0$

- ▶ Adaptive SQP method for deterministic setting
- Stochastic SQP method for stochastic setting
- Convergence in expection (comparable to SG for unconstrained setting)
- Numerical experiments are very promising
- Various open questions!

Outline

Overview

Ovrominio

SG and SQP

Adaptive (Deterministic) SQl

Stochastic SQI

Conclusion

Stochastic gradient (not descent)

Suppose $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous with constant L.

$$\min_{x \in \mathbb{R}^n} f(x) \equiv \mathbb{E}[F(x, \omega)]$$

Algorithm invented by Herbert Robbins and Sutton Monro (1951):

Algorithm SG: Stochastic Gradient

- 1: choose an initial point $x_0 \in \mathbb{R}^n$ and stepsizes $\{\alpha_k\} > 0$
- for $k \in \{0, 1, 2, \dots\}$ do
- set $x_{k+1} \leftarrow x_k \alpha_k g_k$, where $\mathbb{E}_k[g_k] = \nabla f(x_k)$
- 4: end for

Overview

Stochastic gradient (not descent)

Suppose $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous with constant L.

$$\min_{x \in \mathbb{R}^n} f(x) \equiv \mathbb{E}[F(x, \omega)]$$

Algorithm invented by Herbert Robbins and Sutton Monro (1951):

Algorithm SG: Stochastic Gradient

- 1: choose an initial point $x_0 \in \mathbb{R}^n$ and stepsizes $\{\alpha_k\} > 0$
- 2: **for** $k \in \{0, 1, 2, \dots\}$ **do**
- set $x_{k+1} \leftarrow x_k \alpha_k g_k$, where $\mathbb{E}_k[q_k] = \nabla f(x_k)$
- 4: end for

Overview

Not a descent method! ... but eventual descent in expectation:

$$f(x_{k+1}) - f(x_k) \leq \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{1}{2} L \|x_{k+1} - x_k\|_2^2$$

$$= -\alpha_k \nabla f(x_k)^T g_k + \frac{1}{2} \alpha_k^2 L \|g_k\|_2^2$$

$$\implies \mathbb{E}_k [f(x_{k+1})] - f(x_k) \leq -\alpha_k \|\nabla f(x_k)\|_2^2 + \frac{1}{2} \alpha_k^2 L \mathbb{E}_k [\|g_k\|_2^2].$$

Markov process: x_{k+1} depends only on x_k and random choice at iteration k.

SG theory

Overview

Theorem SG

If $\mathbb{E}_k[\|g_k - \nabla f(x_k)\|_2^2] \leq M$, then:

$$\alpha_k = \frac{1}{L} \qquad \Longrightarrow \mathbb{E}\left[\frac{1}{k} \sum_{j=1}^k \|\nabla f(x_j)\|_2^2\right] \le \mathcal{O}(M)$$

$$\alpha_k = \mathcal{O}\left(\frac{1}{k}\right) \qquad \Longrightarrow \mathbb{E}\left[\frac{1}{\left(\sum_{j=1}^k \alpha_j\right)} \sum_{j=1}^k \alpha_j \|\nabla f(x_j)\|_2^2\right] \to 0.$$

SG illustration

Figure: SG with fixed stepsize (left) vs. diminishing stepsizes (right)

Sequential quadratic optimization (SQP)

Consider

Overview

$$\min_{x \in \mathbb{R}^n} f(x)$$
s.t. $c(x) = 0$

with $g \equiv \nabla f$, $J \equiv \nabla c$, and H (positive definite on Null(J)), two viewpoints:

$$\begin{bmatrix} g(x) + J(x)^T y \\ c(x) \end{bmatrix} = 0$$

$$\begin{bmatrix}
g(x) + J(x)^T y \\
c(x)
\end{bmatrix} = 0$$
or
$$\begin{bmatrix}
\min_{x \in \mathbb{R}^n} f(x) + g(x)^T d + \frac{1}{2} d^T H d \\
\text{s.t. } c(x) + J(x) d = 0
\end{bmatrix}$$

both leading to the same "Newton-SQP system":

$$\begin{bmatrix} H_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ y_k \end{bmatrix} = - \begin{bmatrix} g_k \\ c_k \end{bmatrix}$$

SQP

Overview

 \triangleright Algorithm guided by merit function, with adaptive parameter τ , defined by

$$\phi(x,\tau) = \tau f(x) + ||c(x)||_1$$

a model of which is defined as

$$q(x, \tau, d) = \tau(f(x) + g(x)^T d + \frac{1}{2} \max\{d^T H d, 0\}) + ||c(x) + J(x) d||_1$$

▶ For a given $d \in \mathbb{R}^n$ satisfying c(x) + J(x)d = 0, the reduction in this model is

$$\Delta q(x, \tau, d) = -\tau(g(x)^T d + \frac{1}{2} \max\{d^T H d, 0\}) + ||c(x)||_1,$$

and it is easily shown that

$$\phi'(x,\tau,d) \le -\Delta q(x,\tau,d)$$

SQP with backtracking line search

Algorithm SOP-B

Overview

- 1: choose $x_0 \in \mathbb{R}^n, \, \tau_{-1} \in \mathbb{R}_{>0}, \, \sigma \in (0,1), \, \eta \in (0,1)$
- 2: **for** $k \in \{0, 1, 2, \dots\}$ **do**
- Compute step: solve 3:

$$\begin{bmatrix} H_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ y_k \end{bmatrix} = - \begin{bmatrix} g_k \\ c_k \end{bmatrix}$$

Update parameter: set τ_k to ensure $\Delta q(x_k, \tau_k, d_k) \gg 0$, offered by 4:

$$\tau_k \leq \frac{(1-\sigma)\|c_k\|_1}{g_k^T d_k + \max\{d_k^T H_k d_k, 0\}} \ \text{if} \ g_k^T d_k + \max\{d_k^T H_k d_k, 0\} > 0$$

Line search: backtracking line search to ensure $x_{k+1} \leftarrow x_k + \alpha_k d_k$ yields 5:

$$\phi(x_{k+1}, \tau_k) \le \phi(x_k, \tau_k) - \eta \alpha_k \Delta q(x_k, \tau_k, d_k)$$

6: end for

Convergence theory

Overview

Assumption

- ▶ f. c. q. and J bounded and Lipschitz
- ▶ singular values of J bounded below (i.e., the LICQ)
- $u^T H_k u \geq \zeta ||u||_2^2$ for all $u \in \text{Null}(J_k)$ for all $k \in \mathbb{N}$

Theorem SQP-B

- $\{\alpha_k\} \ge \alpha_{\min} \text{ for some } \alpha_{\min} > 0$
- $\blacktriangleright \{\tau_k\} > \tau_{\min} \text{ for some } \tau_{\min} > 0$
- $ightharpoonup \Delta q(x_k, \tau_k, d_k) \to 0 \text{ implies}$

$$||d_k||_2 \to 0, \quad ||c_k||_2 \to 0, \quad ||g_k + J_k^T y_k||_2 \to 0$$

Stochastic SQP

Outline

Adaptive (Deterministic) SQP

Toward stochastic SQP

Overview

- ▶ In a stochastic setting, line searches are (likely) intractable
- ▶ However, for ∇f and ∇c , may have Lipschitz constants (or estimates)
- ▶ Step #1: Design an adaptive SQP method with

stepsizes determined by Lipschitz constant estimates

▶ Step #2: Design a *stochastic* SQP method on this approach

Overview

Primary challenge: Nonsmoothness

In SQP-B, stepsize is chosen based on reducing the merit function.

Overview

Primary challenge: Nonsmoothness

In SQP-B, stepsize is chosen based on reducing the merit function.

The merit function is nonsmooth! An upper bound is

$$\phi(x_k + \alpha_k d_k, \tau_k) - \phi(x_k, \tau_k)$$

$$\leq \alpha_k \tau_k g_k^T d_k + |1 - \alpha_k| ||c_k||_1 - ||c_k||_1 + \frac{1}{2} (\tau_k L_k + \Gamma_k) \alpha_k^2 ||d_k||_2^2$$

where L_k and Γ_k are Lipschitz constant estimates for f and $||c||_1$ at x_k

Figure: Three cases for upper bound of ϕ

SQP with adaptive stepsizes

Algorithm SQP-A

Overview

- 1: choose $x_0 \in \mathbb{R}^n$, $\tau_{-1} \in \mathbb{R}_{>0}$, $\sigma \in (0,1)$, $\eta \in (0,1)$
- 2: for $k \in \{0, 1, 2, \dots\}$ do
- Compute step: solve

$$\begin{bmatrix} H_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ y_k \end{bmatrix} = - \begin{bmatrix} g_k \\ c_k \end{bmatrix}$$

4: Update parameter: set τ_k to ensure $\Delta q(x_k, \tau_k, d_k) \gg 0$, offered by

$$\tau_k \leq \frac{(1-\sigma)\|c_k\|_1}{g_k^T d_k + \max\{d_k^T H_k d_k, 0\}} \ \ \text{if} \ \ g_k^T d_k + \max\{d_k^T H_k d_k, 0\} > 0$$

5: Compute stepsize: set

$$\begin{split} \widehat{\alpha}_k &\leftarrow \frac{2(1-\eta)\Delta q(x_k,\tau_k,d_k)}{(\tau_k L_k + \Gamma_k)\|d_k\|_2^2} \quad \text{and} \\ \widetilde{\alpha}_k &\leftarrow \widehat{\alpha}_k - \frac{4\|c_k\|_1}{(\tau_k L_k + \Gamma_k)\|d_k\|_2^2} \end{split}$$

6: set

$$\alpha_k \leftarrow \begin{cases} \widehat{\alpha}_k & \text{if } \widehat{\alpha}_k < 1\\ 1 & \text{if } \widehat{\alpha}_k \le 1 \le \widehat{\alpha}_k\\ \widehat{\alpha}_k & \text{if } \widehat{\alpha}_k > 1 \end{cases}$$

set $x_{k+1} \leftarrow x_k + \alpha_k d_k$ and continue or update L_k and/or Γ_k and return to step 5

8: end for

Approximately the same theory and similar empirical performance as SQP-B

Stochastic SQP

Outline

Stochastic SQP

Stochastic setting

Overview

Consider the stochastic problem:

$$\min_{x \in \mathbb{R}^n} f(x) \equiv \mathbb{E}[F(x, \omega)]$$

s.t. $c(x) = 0$

Let us assume only the following:

Assumption

For all $k \in \mathbb{N}$, one can compute \bar{g}_k with

$$\mathbb{E}_k[\bar{g}_k] = g_k =: \nabla f(x_k)$$

$$\mathbb{E}_k[\|\bar{g}_k - g_k\|_2^2] \le M$$

Search directions computed by:

$$\begin{bmatrix} H_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} \bar{d}_k \\ \bar{y}_k \end{bmatrix} = - \begin{bmatrix} \bar{g}_k \\ c_k \end{bmatrix}$$

Important: Given x_k , the values (c_k, J_k, H_k) are deterministic

Stochastic SQP with adaptive stepsizes

(For simplicity, assume Lipschitz constants L and Γ are known.)

Algorithm : Stochastic SQP

- 1: choose $x_0 \in \mathbb{R}^n$, $\bar{\tau}_{-1} \in \mathbb{R}_{>0}$, $\sigma \in (0,1)$, $\{\beta_k\} \in (0,1]$
- 2: for $k \in \{0, 1, 2, \dots\}$ do
- 3: Compute step: solve

$$\begin{bmatrix} H_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} \overline{d}_k \\ \overline{y}_k \end{bmatrix} = - \begin{bmatrix} \overline{g}_k \\ c_k \end{bmatrix}$$

Update parameter: set $\bar{\tau}_k$ to ensure $\Delta \bar{q}(x_k, \bar{\tau}_k, \bar{d}_k) \gg 0$, offered by 4:

$$\bar{\tau}_k \leq \frac{(1-\sigma)\|c_k\|_1}{\bar{g}_k^T \bar{d}_k + \max\{\bar{d}_k^T H_k \bar{d}_k, 0\}} \quad \text{if} \quad \bar{g}_k^T \bar{d}_k + \max\{\bar{d}_k^T H_k \bar{d}_k, 0\} > 0$$

5: Compute stepsize: set

$$\begin{split} & \bar{\hat{\alpha}}_k \leftarrow \frac{\beta_k \Delta \bar{q}(x_k, \bar{\tau}_k, \bar{d}_k)}{(\bar{\tau}_k L + \Gamma) \|\bar{d}_k\|_2^2} \text{ and} \\ & \bar{\hat{\alpha}}_k \leftarrow \hat{\bar{\alpha}}_k - \frac{4\|c_k\|_1}{(\bar{\tau}_k L + \Gamma) \|\bar{d}_k\|_2^2} \end{split}$$

6: set

Overview

$$\bar{\alpha}_k \leftarrow \begin{cases} \bar{\hat{\alpha}}_k & \text{if } \bar{\hat{\alpha}}_k < 1\\ 1 & \text{if } \bar{\hat{\alpha}}_k \le 1 \le \bar{\hat{\alpha}}_k\\ \bar{\hat{\alpha}}_k & \text{if } \bar{\hat{\alpha}}_k > 1 \end{cases}$$

- set $x_{k+1} \leftarrow x_k + \bar{\alpha}_k \bar{d}_k$
- 8: end for

Stepsize control

Overview

The sequence $\{\beta_k\}$ allows us to consider, like for SG,

- a fixed stepsize
- \triangleright diminishing stepsizes (e.g., $\mathcal{O}(1/k)$)

Unfortunately, additional control on the stepsize is needed

- too small: insufficient progress
- ▶ too large: ruins progress toward feasibility / optimality

We never know when the stepsize is too small or too large!

Stepsize control

Overview

The sequence $\{\beta_k\}$ allows us to consider, like for SG,

- a fixed stepsize
- \triangleright diminishing stepsizes (e.g., $\mathcal{O}(1/k)$)

Unfortunately, additional control on the stepsize is needed

- too small: insufficient progress
- ▶ too large: ruins progress toward feasibility / optimality

We never know when the stepsize is too small or too large!

Idea: Project $\bar{\alpha}_k$ and $\bar{\alpha}_k$ onto

$$\left[\frac{\beta_k\bar{\tau}_k}{\bar{\tau}_kL+\Gamma},\frac{\beta_k\bar{\tau}_k}{\bar{\tau}_kL+\Gamma}+\theta\beta_k^2\right]$$

where $\theta \in \mathbb{R}_{>0}$ is a user-defined parameter

Fundamental lemma

Lemma

Overview

For all $k \in \mathbb{N}$, for any realization of \overline{g}_k , one finds

$$\begin{aligned} & \phi(x_k + \bar{\alpha}_k \bar{d}_k, \bar{\tau}_k) - \phi(x_k, \bar{\tau}_k) \\ & \leq \underbrace{-\bar{\alpha}_k \Delta q(x_k, \bar{\tau}_k, d_k)}_{\mathcal{O}(\beta_k), \text{ ``deterministic''}} + \underbrace{\frac{1}{2} \bar{\alpha}_k \beta_k \Delta \bar{q}(x_k, \bar{\tau}_k, \bar{d}_k)}_{\mathcal{O}(\beta_k^2), \text{stochastic/noise}} + \underbrace{\bar{\alpha}_k \bar{\tau}_k g_k^T (\bar{d}_k - d_k)}_{\text{due to adaptive } \bar{\alpha}_k} \end{aligned}$$

Good merit parameter behavior

Lemma

Overview

If $\{\bar{\tau}_k\}$ eventually remains fixed at sufficiently small $\tau_{\min} > 0$, then for large k

$$\mathbb{E}_k[\bar{\alpha}_k \bar{\tau}_k g_k^T (\bar{d}_k - d_k)] = \beta_k^2 \tau_{\min} \mathcal{O}(\sqrt{M})$$

Theorem

If $\{\bar{\tau}_k\}$ eventually remains fixed at sufficiently small $\tau_{\min} > 0$, then for large k

$$\beta_k = \mathcal{O}(1) \implies \alpha_k = \frac{\tau_{\min}}{\tau_{\min}L + \Gamma} \implies \mathbb{E}\left[\frac{1}{k} \sum_{j=1}^k (\|g_j + J_j^T y_j\|_2 + \|c_j\|_2)\right] \le \mathcal{O}(M)$$

$$\beta_k = \mathcal{O}\left(\frac{1}{k}\right) \implies \mathbb{E}\left[\frac{1}{\left(\sum_{i=1}^k \beta_j\right)} \sum_{j=1}^k \beta_j (\|g_j + J_j^T y_j\|_2 + \|c_j\|_2)\right] \to 0$$

Poor merit parameter behavior

 $\{\bar{\tau}_k\} \setminus 0$:

Overview

- cannot occur if $\|\bar{g}_k g_k\|_2$ is bounded uniformly
- \blacktriangleright occurs with small probability if distribution of \overline{g}_k has fast decay(?)

 $\{\bar{\tau}_k\}$ remains too large:

- can only occur if realization of $\{\bar{g}_k\}$ is one-sided for all k
- if there exists $p \in (0,1]$ such that, for all k in infinite \mathcal{K} ,

$$\mathbb{P}_k \left[\overline{g}_k^T \overline{d}_k + \max\{ \overline{d}_k^T H_k \overline{d}_k, 0 \} \geq g_k^T d_k + \max\{ d_k^T H_k d_k, 0 \} \right] \geq p$$

then occurs with probability zero

Neither occurred in our experiments

Numerical results

Overview

CUTE problems with noise added to gradients with different noise levels

- ▶ Stochastic SQP: 10³ iterations
- Stochastic Subgradient: 10^4 iterations and tuned over 11 values of τ

Figure: Box plots for feasibility errors (left) and optimality errors (right).

Stochastic SQP

Outline

Overvie

SG and SO

Adaptive (Deterministic) SQl

Stochastic SQI

Conclusion

Summary

Overview

Consider equality constrained stochastic optimization:

$$\min_{x \in \mathbb{R}^n} f(x) \equiv \mathbb{E}[F(x, \omega)]$$
 s.t. $c_{\mathcal{E}}(x) = 0$

- ▶ Adaptive SQP method for deterministic setting
- Stochastic SQP method for stochastic setting
- Convergence in expection (comparable to SG for unconstrained setting)
- Numerical experiments are very promising