Course Information:

Lectures: Mondays & Wednesdays, 5:40am-6:55pm, 545 Seeley W. Mudd Building
Office Hours: Mondays & Wednesdays, 3:30pm-5:30pm, Schapiro CEPSR 822

Instructor Information:

Name: Frank E. Curtis
Office: Schapiro CEPSR 822
Phone: +1 (610) 758-4879 (Office)
 +1 (646) 789-5490 (Mobile)
E-mail: frank.e.curtis@gmail.com
 frank.e.curtis@lehigh.edu
 fec2111@columbia.edu
IM: frank.e.curtis (Google)
 frank.e.curtis (Skype)
Web: http://coral.islehigh.edu/frankecurtis

Description: Convexity, as it is defined for sets and functions, is of fundamental importance in the study of various problems in applied mathematics and engineering. The purpose of this course is to provide a rigorous introduction to the rich field of convex analysis, particularly as it relates to mathematical optimization and duality theory. In addition to formal analytical tools and concepts, emphasis is placed on developing a geometric and intuitive understanding of convex objects, optimization problems, and duality concepts.

Course Objectives: The objectives of this course are for students to do the following:

• Understand the central role of convexity in applied mathematics and optimization in particular.
• Learn basic concepts related to convex sets and functions.
• Explore important special types of convexity, such as polyhedral convexity.
• Gain a fundamental understanding of duality via insights provided by geometric arguments.
• Investigate concepts related to conjugacy and the calculus of subdifferentiable functions.
• Develop a mathematically rigorous understanding of an important area of research.
• Be able to apply course concepts in other areas of scientific research.

Prerequisites: IEOR E6613 and EEOR E4650. Please see the Mathematical Background on CourseWorks.

Office Hours: Please come to office hours if you have any questions about the course. I am also available through e-mail (always) and on Google Hangout (often). If I do not respond to an e-mail within 24 hours, then please assume that I have not received it and send a follow-up e-mail. If I do not respond on Google Hangout, then I am either busy or you are contacting me too late in the day, in which case you can try again the next day (during work hours) or send an e-mail instead. I am also willing to meet at other times, but in such cases please e-mail me in advance to set up a mutually convenient time.

CourseWorks: Lecture notes will be posted on CourseWorks prior to each lecture. Homework assignments, solutions, announcements, and other important material will also be posted on CourseWorks. Important information, corrections, and updates about the course may also be sent by e-mail.

Textbook: The primary textbook for the course is the following:

Reading the textbook is not required, but it is recommended. You are not responsible for textbook material that is not covered in lecture. Course material also will be derived from the following recommended textbooks:

Expected Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Lecture Topic(s)</th>
<th>Note(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/17</td>
<td>Motivation and Background</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1/22, 1/24</td>
<td>Convex Sets</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1/29, 1/31</td>
<td>Projections, Hulls, and Relative Interiors</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2/05, 2/07</td>
<td>Recession Cones and Lineality Spaces</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2/12, 2/14</td>
<td>Hyperplanes, Separation, and Polyhedral Sets</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2/19, 2/21</td>
<td>Convex Functions</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2/26, 2/28</td>
<td>Conjugate Functions</td>
<td>No Wednesday Lecture</td>
</tr>
<tr>
<td>8</td>
<td>3/05, 3/07</td>
<td>Fundamentals of Convex Optimization</td>
<td>Midterm on Monday</td>
</tr>
<tr>
<td>9</td>
<td>3/12, 3/14</td>
<td>Spring Break</td>
<td>No Lectures</td>
</tr>
<tr>
<td>10</td>
<td>3/19, 3/21</td>
<td>Geometric Duality Framework</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3/26, 3/28</td>
<td>Convex Optimization Problems</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4/02, 4/04</td>
<td>Convex Optimization Problems</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4/09, 4/11</td>
<td>Subdifferential Theory</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4/16, 4/18</td>
<td>First-Order Algorithms</td>
<td>No Wednesday Lecture</td>
</tr>
<tr>
<td>15</td>
<td>4/23, 4/25</td>
<td>First-Order Algorithms</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4/30</td>
<td>Second-Order Algorithms</td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td></td>
<td></td>
<td>Final Exam (TBD)</td>
</tr>
</tbody>
</table>

\LaTeX: It is recommended that all work be submitted as documents produced with \LaTeX.

Grading: Your grade will be calculated as follows.

- Homework: 20%
- Midterm Exam: 35%
- Final Exam: 35%
- Participation: 10%

Homeworks: There will be regular homework assignments throughout the semester, generally assigned and due every few weeks. Each homework must be submitted electronically via CourseWorks. No credit will be given for any late assignment. You are free to consult with other students when working on homeworks, but the work you submit must be your own. *Please cite any references you use, including fellow students.* Your homework grade will be determined by the number of points you accumulate over the entire semester.
as compared to the maximum number of points that are possible to accumulate. In this manner, homeworks with more questions will effectively have a higher weight in determining your homework grade.

Exams: Both exams will be cumulative, closed-book, closed-notes, in-class, written exams.

Participation: Attendance will not be taken. However, participation will factor into your grade. If you are unable to participate in lecture, then participation entails being a presence online—via e-mail or CourseWorks—or in office hours. In short, if by the end of the semester we have not had any one-on-one discussions about the course and/or course material, then your participation grade will suffer.

Collaboration Policy: The sharing of ideas is educationally useful and you are encouraged to discuss assignments with other students. However, *plagiarism* of any kind is destructive, fraudulent, and unacceptable. You are strictly forbidden to copy another student’s written work, whole or in part, and submit that work under your name. You are also strictly forbidden to make trivial or mechanical changes to another student’s written work and submit that work under your name. Note that while electronic plagiarism is easier to perform (via copy-and-paste), it is also easier to detect. Plagiarized work will receive no credit and repeat offenses will result in more severe action. A sure way to avoid this issue is to discuss the assignments with fellow students, but then write your solutions individually and independently.

Emergencies: Everyone is responsible for all material covered and announcements made in lecture. If you believe you will miss a long period of time in the course due to illness, a family emergency, etc., then please contact me as early as possible. Under no circumstances will credit be given for missed work unless you have discussed your absence with me in advance.

Regrade Requests: If you disagree with a grade you receive, then you may submit a regrade request. This request must be written and submitted no more than 48 hours after you receive the grade.

Recording Devices: Voice and/or video recording devices may be used only with the approval of everyone in the classroom. Please let me know in advance if you wish to use these types of devices.