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Abstract A line search algorithm for minimizing nonconvex and/or nonsmooth
objective functions is presented. The algorithm is a hybrid between a standard
Broyden–Fletcher–Goldfarb–Shanno (BFGS) and an adaptive gradient sampling (GS)
method. The BFGS strategy is employed because it typically yields fast convergence
to the vicinity of a stationary point, and together with the adaptive GS strategy the
algorithm ensures that convergence will continue to such a point. Under suitable
assumptions, it is proved that the algorithm converges globally with probability one.
The algorithm has been implemented inC++ and the results of numerical experiments
illustrate the efficacy of the proposed approach.
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1 Introduction

We propose an algorithm for minimizing a locally Lipschitz objective function that
is continuously differentiable in an open, dense subset of a real vector space. Such
a function may be nonsmooth and/or nonconvex, which precludes well-known tech-
niques for solving convex optimization problems that have been developed in recent
decades. Applications in which problems of this type arise include, e.g., robust control
[22,23,45,46], robust optimization [2,19,47], image restoration [10,11], eigenvalue
optimization [1], compressed sensing [8,9,16], and decomposition methods for large-
scale or complex optimization problems [4,41].

Our algorithm is based on theBroyden [5], Fletcher [17], Goldfarb [18], and Shanno
[43] (BFGS) method. Since its inception, this approach—arguably the most effective
quasi-Newton method [39]—has been extremely popular for solving smooth opti-
mization problems. This popularity stems from the fact that the method only requires
first derivatives of the objective function, and yet can achieve a local superlinear rate
of convergence. Moreover, many have witnessed good performance of BFGS when
solving nonsmooth problems [24,25], despite the fact that global convergence guar-
antees for the algorithm in this context are rather limited [35]. In order to overcome
this theoretical deficiency, our algorithm enhances BFGS with an adaptive gradient
sampling (GS) strategy adopted from the method in [14]. With this enhancement, as
well as other practical features, we have designed an algorithm that exhibits good
practical behavior, and for which we have established global convergence guarantees
under suitable assumptions.

A feature critical to the practical performance of our algorithm is that, when it is
applied to solve many problem instances, the algorithm reduces to an unadulterated
BFGS strategy for the majority of the iterations. This feature is intentional, and is
motivated by the encouraging results presented in [35]. Indeed, a straightforward
BFGS algorithm applied to solve a nonsmooth, nonconvex optimization problem is
often very effective inmaking progress toward a solution. However, it suffers from two
important drawbacks: (i) it does not inherently offer termination conditions related to
a stationarity measure that can be guaranteed to be satisfied in the limit, meaning that
there is no immediate way of determining whether a solution has been reached; and (ii)
guaranteeing global convergence appears to be difficult in general because the inverse
Hessian approximations may tend to singularity in the neighborhood of any solution
point at which the objective function is not differentiable. Overall, these deficiencies
suggest that while BFGS may be able to converge to a neighborhood of a solution,
enhancements—such as our adaptive GS procedure—may be needed to obtain high
accuracy and provide the means to guarantee a certificate of stationarity.

The GS algorithm was introduced by Burke et al. [7]. It employs a strategy of
randomly sampling gradients to approximate the ε-subdifferential of the objective
about each iterate [6]. The algorithm was proposed as a strategy for establishing
global convergence guarantees when solving nonconvex, locally Lipschitz optimiza-
tion problems. Enhancements to the algorithm have also been established over the
past few years, both to improve the theoretical and practical behavior of the algorithm
[14,32] and to extend the methodology to broader classes of problems [13,26,27,33].
The main disadvantage of the algorithm, however, is that each iteration is significantly
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more expensive than a BFGS iteration.Moreover, the algorithm in [7] does not employ
variable-metric Hessian approximations, and thus it may fail to fully capture the cur-
vature information that makes the BFGS method so effective. These disadvantages
motivated the enhancements proposed in [14], though a drawback of the algorithm in
that paper is that each iteration requires sampling gradient information. The subprob-
lems that arise in the GS algorithm and its variants are related to those in the popular
class of bundle methods [28,30], which were initially developed for solving convex
minimization problems, but for which there are enhancements for handling noncon-
vexity [24,25,29]. The subproblems are distinct, however, in that bundle methods are
based on a methodology of computing cutting planes—i.e., affine underestimators of
the objective function—whereas the GS algorithm and its variants do not involve cut-
ting planes, even when the objective function is convex; see [13] for further discussion
on the difference between GS and bundle methods.

In summary, our proposed BFGS–GS algorithm possesses theoretical and practical
advantages. It typically behaves as an unadulterated BFGS algorithm, and thus often
converges to a neighborhood of a solution with a computational effort on the order of
one gradient evaluation and one matrix–vector product per iteration. Throughout, the
algorithm dynamically employs an adaptive GS strategy in order to provide a practical
stationarity certificate as well as global convergence guarantees. Careful attention has
been paid to the design of our line search, sample set update, and inverse Hessian
approximation subroutines so that the algorithm attains this desirable behavior. For
example, in certain situations, we replace a BFGS inverse Hessian approximation with
a carefully constructed limited memory BFGS (i.e., L-BFGS [38]) approximation to
ensure positive definiteness andboundedness.Wehave also implemented the algorithm
in C++ and performed a variety of experiments that illustrate the efficacy of the
proposed method.

In Sect. 2, we present our main algorithm, including its relevant subroutines for
the line search, sample set update, and inverse Hessian approximation strategies. We
then analyze the well-posedness and global convergence properties of the algorithm in
Sect. 3, building on results proved during the algorithmic development in Sect. 2. An
implementation of our algorithmic framework and the results of numerical experiments
on a set of test problems is the subject of Sect. 4.

1.1 Notation and definitions

The sets of n-dimensional real, natural, and positive natural numbers are denoted by
R

n ,Nn , andNn+, respectively, whereN := {0, 1, 2, . . . } andN+ := {1, 2, . . . }. The i th
element of a vector x ∈ R

n is written as xi . We denote the closure and convex hull of a
subset S ⊆ R

n as cl S and conv S, respectively. The closed Euclidean ball with radius
ε > 0 about x ∈ R

n is denoted as Bε(x) := {x ∈ R
n : ‖x − x‖2 ≤ ε}. The cardinality

of a finite subset S ⊂ R
n is written as |S| ∈ N. For a matrix W , we write W � 0 to

indicate that W is real, symmetric, and positive definite. Given W � 0 and x ∈ R
n ,

we define the “W -norm” of x as ‖x‖W := ‖W 1/2x‖2 so that ‖x‖2W = xT W x . Given
W � 0 and nonempty bounded S ⊆ R

n , we define the (oblique) “W -projection” of
the origin onto cl conv S as PW (S), which is the unique solution of minx ‖x‖2W subject
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to x ∈ cl conv S. The quantities e and I respectively represent a vector of ones and
an identity matrix whose sizes are determined by the context in which each quantity
appears. For {a, b} ⊂ R

n , we write a ⊥ b to indicate that a and b are complementary,
i.e., that ai bi = 0 for all i ∈ {1, . . . , n}. We use a subscript for a quantity to denote the
iteration number of an algorithm to which it corresponds; e.g., the value for a vector
x in the kth iteration of an algorithm is written as xk . If the limit of a sequence {ak} as
k tends to infinity (i.e., k → ∞) exists and equals a, then we write {ak} → a.

For a function f : Rn → R, the sublevel set corresponding to a point x ∈ R
n is

written as L f (x) := {x ∈ R
n : f (x) ≤ f (x)}. Such a function is locally Lipschitz

over Rn if for every compact subset S ⊂ R
n , there exists a constant L S ≥ 0 such that

| f (x)− f (y)| ≤ L S‖x − y‖2 for any {x, y} ⊆ S. If f is locally Lipschitz onRn , then
the Clarke subdifferential [12] of f at x can be written as

∂ f (x) :=
⋂

ε>0

cl conv∇ f (Bε(x) ∩ D),

and the Clarke ε-subdifferential [20] of f at x is ∂ε f (x) := cl conv ∂ f (Bε(x)). For
such a function, a point x ∈ R

n is Clarke stationary if 0 ∈ ∂ f (x), and is Clarke
ε-stationary if 0 ∈ ∂ε f (x). For the sake of brevity, hereafter we drop the distinction
“Clarke” from all of the terms defined here.

2 Algorithm description

Consider the unconstrained optimization problem

min
x∈Rn

f (x), (2.1)

where f : Rn → R satisfies the following assumption.

Assumption 2.1 The objective function f : Rn → R of problem (2.1) is locally
Lipschitz over Rn and continuously differentiable in an open, dense subset D of Rn .

Given an initial iterate x0 ∈ D, our desire is to compute a solution of (2.1). However,
since f may be nonconvex and/or nonsmooth, our algorithm is designed merely to
locate a stationary point for f in the sublevel setL f (x0). More precisely, it is designed
to compute a sequence of (approximately) εk -stationary points for a sequence {εk} → 0
that is set dynamically within the algorithm.

We present our algorithm in four subsections. The first subsection describes the
main algorithm, at the heart of which is the search direction computation. We then
discuss, in turn, the details of our line search, sample set generation scheme, and
inverse Hessian approximation strategy. Since f may be nonsmooth, here we use the
term “Hessian” loosely as a matrix that approximates changes in ∇ f about a given
point in D, changes that may be arbitrarily large relative to the distance between
the given point and nearby points inD. Each of the latter algorithmic components are
carefully constructed so that the main algorithm is well-posed and globally convergent
to a stationary point of f under Assumption 2.1.
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Table 1 User-specified constants for the proposed algorithm and subroutines

Parameter(s) Range Description

ν (0, ∞) Stationarity measure tolerance

ψ (0, 1) Sampling radius reduction factor

ξ (0, ∞) Model curvature threshold

η < η (0, 1) Armijo–Wolfe line search constants

α ≤ α (0, ∞) Step size thresholds

γ (0, 1) Step size modification factor

J ≤ J N Iteration thresholds for line search

J N Iteration threshold for iterate perturbation

p [n + 1,∞) ∩ N Sample set size threshold

μ < 1 < μ (0, ∞) (L-)BFGS updating thresholds

w ≤ w (0, ∞) (L-)BFGS updating thresholds

m N L-BFGS memory length

Our algorithm employs various user-specified parameters, which, for convenience,
we enumerate in Table 1. Our global convergence theory allows for any choices of
these parameters in the given ranges, except for a restriction on the curvature threshold
ξ and its relationship to other parameter values. This restriction, which is required due
to a technical lemma revealed in the development of our algorithm, is given at the
beginning of Sect. 3.

2.1 Main algorithm

We now present our main algorithm, designed to converge to a stationary point of f in
the sublevel setL f (x0). Ideally, such a point would be revealed as a cluster point of the
iterate sequence {xk} obtained via a standard BFGS method, but since such a method
generally has unknown convergence properties when employed to solve (2.1), our
algorithm includes enhancements with which we guarantee global convergence with
probability one. These enhancements are similar to those developed in the adaptive
GS method proposed in [14], though are less expensive in the sense that, in many
iterations, gradient sampling is not required.

At an iterate xk ∈ D and with an inverse Hessian approximation of f at xk , call it
Wk � 0, a standard BFGS method computes a search direction as

dk ← −Wk∇ f (xk). (2.2)

However, in our approach, we incorporate gradient information at points in a set
Xk := {xk,0, . . . , xk,pk } that has xk,i = xk for some i ∈ {0, . . . , pk} and includes
pk other points from Bk := Bεk (xk) ∩ D. We refer to Xk as the sample set and
pk as the sample set size, though note that pk = 0 corresponds to |Xk | = 1. With
this information, we desire the search direction dk that is the minimizer of a local
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piece-wise quadratic model of f at xk ; i.e., we desire dk to be the solution of

min
d∈Rn

qk(d), where qk(d) := max
x∈Xk

{
∇ f (x)T d

}
+ 1

2‖d‖2
W−1

k
. (2.3)

Define the matrix of gradients

Gk := [gk,0, . . . , gk,pk ] with gk,i := ∇ f (xk,i ) for all i ∈ {0, . . . , pk}. (2.4)

The solution dk of (2.3) can be obtained by solving the primal–dual pair

{
min

(z,d)∈Rn+1
z + 1

2‖d‖2
W−1

k

s.t. GT
k d ≤ ze

}
and

{
max

y∈Rpk+1
− 1

2‖Gk y‖2Wk

s.t. eT y = 1, y ≥ 0

}
; (2.5)

we denote the primal–dual solution of these problems by (zk, dk, yk).
If the sample set has only one element, i.e., if pk = 0 with Xk = {xk,0} = {xk}, then

it is easily seen that our definitions are consistent in that dk from (2.5) is that in (2.2).
Thus, henceforth we may refer to dk as the solution of (2.3), knowing that if pk = 0,
then it can be obtained directly from (2.2), and otherwise it can be obtained by solving
the primal quadratic optimization subproblem (QP) in (2.5). In fact, if instead one
solves the latter dual QP in (2.5) to obtain yk , then the search direction can be obtained
as dk ← −Wk Gk yk . This is the approach that we take in our implementation described
in Sect. 4, and so it will be the approach used in the remainder of our discussion and
analysis. Note that a benefit of this strategy is that the Hessian approximation W −1

k
need not be computed; i.e., we only need the matrix Wk appearing in (2.2) and (2.5)
and all subsequent computations will be written in such a way that only Wk is needed,
not W −1

k .
Overall, there are two interpretations of the search direction dk . First, it can be

viewed, as in subproblem (2.3), as the minimizer of a local piece-wise quadratic
model of f at xk with gradient information sampled at the points in Xk . Second, it can
be viewed, in terms of the dual QP in (2.5), as Wk times the negation of the oblique
Wk-projection of the origin onto the convex hull of the gradients of f at the points in
the sample set Xk , i.e., as dk = −Wk PWk ({∇ f (x)}x∈Xk ), which is to say that it is Wk

times the negation of the minimum Wk-norm element in conv{∇ f (x)}x∈Xk . Clearly,
with Wk = I , the search direction reduces to the negation of the minimum Euclidean
norm element in conv{∇ f (x)}x∈Xk , which is precisely the “nonnormalized search
direction” interpretation described in [32, §4.1]. The former interpretation is perhaps
more intuitively appealing as that of a search direction for an optimization algorithm,
though we will make more use of the second interpretation in our global convergence
analysis.

Once the pair (dk, yk) has been computed via (2.5), we either compute a null step
size—to produce a null step, which may be necessary in some cases—or a positive
step size αk > 0 such that the trial point xk +αkdk yields a sufficiently lower objective
value than that offered by xk . If xk + αkdk ∈ D, then the next iterate xk+1 is set
to be this trial point; otherwise a point xk+1 ∈ D in the vicinity of xk + αkdk is
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computed such that f (xk+1) is sufficiently less than f (xk). In fact, the step size αk

and new iterate xk+1 may be chosen also to satisfy a curvature condition to ensure
that an unadulterated BFGS update will produce a positive definite inverse Hessian
approximation in the following iteration. All of the details of these procedures are
given in Sect. 2.2. Overall, with x0 ∈ D, we ensure {xk} ⊂ D.

Once the pair (dk, yk), step size αk ≥ 0, and next iterate xk+1 ∈ D have been
computed, the remainder of the iteration involves setting the next sampling radius
εk+1 ∈ (0, εk], the sample set Xk+1 and related quantities, and the inverse Hessian
approximation Wk+1. In particular, the value to which the next sampling radius εk+1
is set depends on whether or not the following inequalities hold:

‖Gk yk‖Wk ≤ νεk; (2.6a)

‖Gk yk‖Wk ≥ ξ‖dk‖2; (2.6b)

αk > 0. (2.6c)

The details pertaining to the updates of sample set and inverse Hessian approximation
are the subjects of Sects. 2.3 and 2.4, respectively.

We now present our main algorithm, stated as Algorithm 1.

Algorithm 1 BFGS gradient sampling algorithm
1: Choose an initial iterate x0 ∈ D, inverse Hessian approximation W0 � 0, and sampling radius ε0 > 0.

Set the initial sample set X0 ← {x0}, sample set size p0 ← 0, matrix of sample gradients G0 as
defined in (2.4), and iteration counter k ← 0.

2: If ∇ f (xk ) = 0, then terminate and return the stationary point xk .
3: Compute a search direction dk ← −Wk Gk yk where yk solves the dual QP in (2.5).
4: Compute a step size αk ≥ 0 via Algorithm 2 in Sect. 2.2.
5: Compute a new iterate xk+1 ∈ D via Algorithm 3 in Sect. 2.2.
6: If (2.6) holds, then set the new sampling radius εk+1 ← ψεk ; otherwise, set εk+1 ← εk .
7: Compute a new sample set Xk+1 with pk+1 ← |Xk+1| − 1 via Algorithm 4 in Sect. 2.3.
8: Compute the matrix of gradients Gk+1 as defined in (2.4).
9: Compute a new inverse Hessian approximation Wk+1 � 0 via Algorithm 5 in Sect. 2.4.
10: Set k ← k + 1 and go to Step 2.

We close this subsection by stating a result that if Algorithm 1 reaches Step 3 during
iteration k, then it computes dk as null or as a direction of strict descent for f from
xk ∈ D. The proof of this result follows similarly to that of [14, Lemma 4.3]. We
state the result here, which also reveals an important relationship between the search
direction dk and the dual QP solution yk , as it will be used to motivate algorithmic
choices made in the following subsections.

Lemma 2.2 If Algorithm 1 reaches Step 3 during iteration k, then it computes a search
direction dk that is zero or a direction of strict descent for f from xk ∈ D. In addition,
the primal–dual solution (zk, dk, yk) of (2.5) satisfies ‖Gk yk‖Wk = ‖dk‖W−1

k
.

Lemma 2.2 allows us to write the conditions in (2.6) as

ξ‖dk‖2 ≤ ‖dk‖W−1
k

≤ νεk and αk > 0, (2.6′)
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from which it is clear that, in Algorithm 1, the sampling radius is decreased if and
only if the step size is nonzero and the search direction has a W −1

k -norm that is both
relatively large compared to its Euclidean norm and relatively small compared to the
current sampling radius.

2.2 Line search

At an iterate xk ∈ D, Algorithm 1 either terminates in Step 2 or, by Lemma 2.2, it
continues to Step 3 to produce a null or strict descent direction dk for f from xk . If
dk = 0, then we simply set αk to its positive initial value, set xk+1 ← xk , and continue
to the next step of the algorithm. If dk �= 0, then our line search aims to compute a step
size αk > 0 such that xk + αkdk yields an objective value that is sufficiently less than
that yielded by xk . In fact, it attempts to compute such a step size so that a curvature
condition is also satisfied, as this would guarantee that an unadulterated BFGS update
will yield Wk+1 � 0; see Sect. 2.4. However, to ensure that the line search is well-
posed under suitable assumptions, this latter requirement is abandoned if such a step
size is not computed within a predetermined number of line search iterations. We
also terminate the search completely (and simply set αk ← 0 and xk+1 ← xk) if the
sample set Xk is not sufficiently large and, after a predetermined number of line search
iterations, a sufficient decrease in f has not been obtained. This choice is motivated
by the fact that if the sample set is not sufficiently large and a relatively large step
size is not acceptable according to the line search conditions, then the algorithm may
benefit by collecting more local gradient information before accepting a positive step
size—which it can be seen to do by observing the sample set update in Sect. 2.3.

Given an iterate xk and pair (dk, yk) from (2.5) with dk �= 0, we aim to compute
a step size αk > 0 satisfying the following Armijo and curvature conditions, which
together compose the well-known weak Wolfe line search conditions [39]:

f (xk) − f (xk + αkdk) > ηαk‖Gk yk‖2Wk
; (2.7a)

vT dk ≥ η∇ f (xk)
T dk, where v ∈ ∂ f (xk + αkdk). (2.7b)

(Technically, we are abusing this terminology as the traditional Armijo condition
employs the negative directional derivative −∇ f (xk)

T dk in place of ‖Gk yk‖2Wk
in

(2.7a). However, our abuse of this terminology is reasonable since, by Lemma 2.2, the
condition (2.7a) also ensures sufficient decrease in f from xk after the step αkdk .) If
the resulting trial point satisfies xk + αkdk ∈ D, then xk+1 is set to be this trial point;
otherwise, we aim to compute xk+1 ∈ D satisfying

f (xk) − f (xk+1) ≥ ηαk‖Gk yk‖2Wk
, (2.8a)

∇ f (xk+1)
T dk ≥ η∇ f (xk)

T dk, (2.8b)

and ‖xk + αkdk − xk+1‖2 ≤ min{αk, εk}‖dk‖2. (2.8c)

Note that these conditions are also satisfied when xk+1 ← xk +αkdk ∈ D, so we may
refer to (2.8) as being satisfied whenever (2.7) holds and xk+1 ← xk + αkdk .
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There are a variety of situations in which it may not be possible to compute a
step size αk > 0 satisfying (2.7), or at least not within a predetermined number of
iterations. For example, such a situation occurs when f is unbounded below along
the ray {xk + αdk : α ≥ 0}. However, even if f is bounded below over this ray, finite
termination of a straightforward line search scheme may not be guaranteed without
strengthening Assumption 2.1, or at least not without additional assumptions about f
at xk along dk ; see Lemma 2.4 below. Hence, we propose Algorithm 2 that guarantees
finite termination by abandoning the curvature condition (2.7b) after a finite number
of trial step sizes have been rejected. We also completely abandon the search for a
positive step size—and set αk ← 0, xk+1 ← xk , and eventually εk+1 ← εk due to
(2.6c)—if Xk is not sufficiently large and the search has not been successful after a
predetermined number of iterations. This truncation of the line search is required to
prove our global convergence guarantees as it will result, by the method in Sect. 2.3,
in additional gradient sampling about xk+1.

Algorithm 2 Armijo–Wolfe line search
1: Take as input the quantities (xk , Gk , Wk , dk , yk ) from Algorithm 1. Set the initial step size boundaries

l0 ← 0 and u0 ← α, step size αk ← γα, and iteration counter j ← 0.
2: If the step is null, i.e., dk = 0, then terminate and return αk .
3: If the sample set is not sufficiently large in that pk < p and the upper iteration threshold has been

surpassed in that j > J , then set αk ← 0, terminate, and return αk .
4: If the lower iteration threshold has been surpassed in that j > J , then reset l j ← 0.
5: If theWolfe conditions (2.7) hold, or if theArmijo condition (2.7a) holds and the lower iteration threshold

has been surpassed in that j > J , then terminate and return αk .
6: If the Armijo condition (2.7a) does not hold, then set l j+1 ← l j and u j+1 ← αk ; otherwise, the

curvature condition (2.7b) does not hold, so set l j+1 ← αk and u j+1 ← u j .
7: Set αk ← (1 − γ )l j+1 + γ u j+1.
8: Set j ← j + 1 and go to Step 3.

After employingAlgorithm2 to compute a step sizeαk ≥ 0,we employAlgorithm3
to compute a new iterate xk+1 ∈ D. If αk = 0, then xk+1 ← xk , but if αk > 0, then
xk+1 will satisfy the perturbed line search conditions (2.8), or at least (2.8a) and (2.8c).
If αk > 0, but (2.7b) does not hold, then we effectively ignore (2.8b) by immediately
setting j ← J + 1 in Step 3 of Algorithm 3.

Algorithm 3 Iterate perturbation
1: Take as input the quantities (xk , εk , Gk , Wk , dk , yk , αk ) from Algorithm 1. Set the initial new iterate

xk+1 ← xk + αkdk and iteration counter j ← 0.
2: If the step or step size is null, i.e., dk = 0 or αk = 0, then terminate and return xk+1.
3: If the curvature condition (2.7b) does not hold, then set j ← J + 1.
4: If xk+1 /∈ D, then continue to Step 5. Otherwise, if the (perturbed) Wolfe conditions (2.8) hold, or if the

(perturbed) Armijo conditions (2.8a) and (2.8c) hold and the iteration threshold has been surpassed
in that j > J , then terminate and return xk+1.

5: Sample xk+1 from a uniform distribution on Bmin{αk ,εk }/j (xk + αkdk ).
6: Set j ← j + 1 and go to Step 4.

We present the following lemma to show that our line search and iterate perturbation
algorithms arewell-posed. The lemmaalso delineates various situations thatmay result
after employing these two subroutines.
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Lemma 2.3 If Algorithm 1 reaches Step 4 during iteration k, then it either computes a
null or positive step size αk , where αk is guaranteed to be positive if pk ≥ p. Moreover,
if αk > 0, then the Wolfe conditions (2.7), or at least the Armijo condition (2.7a), is
satisfied. Algorithm 1 then proceeds to Step 5, where with probability one it computes
a new iterate xk+1 ∈ D with which the (perturbed) Wolfe conditions (2.8), or at least
the (perturbed) Armijo conditions (2.8a) and (2.8c), are satisfied.

Proof If dk = 0, then (2.7) holds for any value of αk ≥ 0, so Algorithm 2 terminates
in iteration j = 0 and returns αk ← γα > 0. In this case, or if Algorithm 2 sets
αk ← 0, then since xk+1 ← xk + αkdk = xk ∈ D satisfies (2.8), it follows that
Algorithm 3 terminates in iteration j = 0 and returns xk+1 ← xk + αkdk . Now
suppose dk �= 0, from which it follows from Lemma 2.2 that dk is a direction of strict
descent for f from xk . Without loss of generality, we may assume that Algorithm 2
performs at least J iterations, at which point it (re)sets l j ← 0, and that it never
sets αk ← 0. It then follows from the fact that xk ∈ D and Lemma 2.2 that, after
a finite number of additional iterations, αk > 0 will be produced at least satisfying
the Armijo condition (2.7a). Turning to Algorithm 3, we may assume without loss of
generality that at least J iterations will be performed, after which it follows from the
strict inequality in (2.7a), the continuity of f , and Assumption 2.1 that, after a finite
number of additional iterations and with probability one, a new iterate xk+1 will be
produced satisfying (2.8a) and (2.8c). ��

With additional assumptions about f and αk initialized to some positive scalar, one
could employ Algorithm 2 with the step size threshold set to α ← ∞ and iteration
thresholds set to J ← ∞ and J ← ∞ and still have a well-posed algorithm. To
make this claim concrete, we present the following result, the proof of which follows
from the results in [35, §4]; see also [34,37,48]. Although we do not wish to make the
additional assumptions required in this lemma, we present this result to motivate the
appeal of our line search strategy.

Lemma 2.4 Suppose fk(α) := f (xk + αdk) − f (xk) is bounded below and weakly
lower semismooth [37] over {α ∈ R : α > 0}. Then, if Algorithm 1 reaches Step 4
during iteration k and the function fk is differentiable at all trial step sizes, Algorithm 2
with αk initialized in (0,∞), α ← ∞, J ← ∞, J ← ∞, and Step 7 replaced by

“7 : I f u j+1 < ∞, then set αk ← (1 − γ )l j+1 + γ u j+1; else, set αk ← αk/γ.”

terminates finitely with αk > 0 satisfying (2.7).

2.3 Sample point generation

After the pair (dk, yk), step size αk , and new iterate xk+1 have been computed, we
are ready in Algorithm 1 to establish the new sample set Xk+1. As previously men-
tioned, we claim that the ideal behavior of the algorithm is that of an unadulterated
BFGS method, at least when such a method continues to make sufficient progress in
reducing the objective function f . Hence, if the curvature of Wk along Gk yk—i.e., by
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Lemma 2.2, the curvature of W −1
k along dk—is bounded below in that (2.6b) holds,

and if the computed step size is sufficiently large in that

αk ≥ α, (2.9)

then we set the default value of Xk+1 ← {xk+1} so that an unadulterated BFGS step
will be computed in the following iteration. However, if either of these conditions
does not hold, then we augment the sample set with points obtained from the previous
sample set and some randomly generated in an εk+1-neighborhood about xk+1. The
details of our sample set update are stated in Algorithm 4, and the salient consequences
of this strategy are provided in the following lemma.

Algorithm 4 Sample set update
1: Take as input the quantities (xk+1, εk+1, Gk , Wk , dk , yk , αk ) from Algorithm 1.
2: If the curvature of the inverse Hessian approximation is bounded below in that (2.6b) holds and the step

size is sufficiently large in that (2.9) holds, then set Xk+1 ← {xk+1} and pk+1 ← 0, terminate, and
return (Xk+1, pk+1).

3: Set Xk+1 ← (Xk ∩ Bk+1) ∪ {xk+1} and choose pk+1 ∈ N+.
4: Set Xk+1 as a collection of pk+1 points generated independently from a uniform distribution over

Bεk+1 (xk+1).

5: If Xk+1 �⊂ D, then go to Step 4.
6: Set Xk+1 ← Xk+1 ∪ Xk+1 and pk+1 ← |Xk+1| − 1.
7: If pk+1 > p, then remove the pk+1 − p eldest members of Xk+1\{xk+1} and set pk+1 ← p.
8: Terminate and return (Xk+1, pk+1).

Lemma 2.5 If Algorithm 1 reaches Step 7 during iteration k, then it either sets
Xk+1 ← {xk+1} and pk+1 ← 0, or, with probability one, it produces

Xk+1 ← ((Xk ∩ Bk+1) ∪ {xk+1} ∪ Xk+1) ⊂ Bk+1

and pk+1 ≥ min{pk + 1, p}.
Proof If (2.6b) and (2.9) hold, then the algorithm sets Xk+1 ← {xk+1} and pk+1 ← 0,
which is the first desirable result. Otherwise, the result follows by the construction
of Algorithm 4, Assumption 2.1, and the fact that the points in Xk+1 are generated
independently and uniformly in Bεk+1(xk+1). ��

2.4 Hessian approximation strategy

Upon computing the pair (dk, yk), step size αk , new iterate xk+1, and new sample
set Xk+1, the final main step of Algorithm 1 is to compute a new inverse Hessian
approximation Wk+1. If the curvature along Gk yk determined by Wk is bounded below
in that (2.6b) holds and if the step size is sufficiently large in that (2.9) holds, then
we obtain Wk+1 � 0 from Wk � 0 via a standard damped BFGS update. However, if
one of these conditions does not hold, then we have reason to believe that a standard
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BFGSupdatemay lead to an approximationwhose ill-conditioningmay be detrimental
to the performance of the algorithm, or at least to our mechanisms for guaranteeing
productive steps and/or verifying stationarity. Hence, in such cases, we set Wk+1 � 0
by an L-BFGS strategy in which we monitor the updates so that the resulting matrix
has a provably bounded condition number.

The algorithm presented in this section makes use of the quantities

sk := xk+1 − xk and tk := ∇ f (xk+1) − ∇ f (xk) for all k ≥ 0. (2.10)

It also potentially uses the set of pairs {(sk−m+1, tk−m+1), . . . , (sk−1, tk−1)}, where
each element is defined similarly as in (2.10) for the previous m −1 iterations. We did
not mention these pairs in our description of Algorithm 1, though it is obvious that
these vectors may be stored in Algorithm 1 for use in the algorithm in this subsection
without affecting other aspects of Algorithm 1 in any way.

If sk = 0 or tk = 0, then we claim that we have obtained no useful curvature
information from the step from xk to xk+1, so we set Wk+1 ← Wk . Otherwise, if
(2.6b) and (2.9) hold, then we damp the BFGS update by setting

rk ← δksk + (1 − δk)Wktk, (2.11)

where the scalar δk is defined by

δk ←
⎧
⎨

⎩
1 if sT

k tk ≥ μt T
k Wktk

(1 − μ)t T
k Wktk/(t T

k Wktk − sT
k tk) if sT

k tk < μt T
k Wktk,

(2.12)

then employ the standard BFGS formula with (sk, tk) replaced by (rk, tk) [39]:

Wk+1 ←
(

I − rktT
k

r T
k tk

)
Wk

(
I − tkr T

k

r T
k tk

)
+ rkr T

k

r T
k tk

. (2.13)

On the other hand, if sk �= 0 and tk �= 0, but at least one of (2.6b) or (2.9) does not
hold, thenwe employ a damped L-BFGS strategy, proceeding in the followingmanner.
First, choosing a scalar wk > 0, we initialize W (k−m)

k+1 ← wk I . Then, for increasing j
in the ordered set {k − m + 1, . . . , k}, we set

r j ← δ j s j + (1 − δ j )W ( j−1)
k+1 t j , (2.14)

where

δ j ←
⎧
⎨

⎩
1 if sT

j t j ≥ μt T
j W ( j−1)

k+1 t j

(1 − μ)t T
j W ( j−1)

k+1 t j/(t T
j W ( j−1)

k+1 t j − sT
j t j ) if sT

j t j < μt T
j W ( j−1)

k+1 t j ,

(2.15)
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and

W ( j)
k+1 ←

(
I − r j t T

j

r T
j t j

)
W ( j−1)

k+1

(
I − t j r T

j

r T
j t j

)
+ r jr T

j

r T
j t j

. (2.16)

Finally, we set Wk+1 ← W (k)
k+1. In this procedure, in order to guarantee that the

resulting inverse Hessian approximation has a bounded condition number, for each j
we skip the update in (2.16)—and simply set W ( j)

k+1 ← W ( j−1)
k+1 —unless

s j �= 0, t j �= 0, and max{‖r j‖22, ‖t j‖22} ≤ μr T
j t j . (2.17)

We formalize our inverse Hessian approximation strategy as Algorithm 5. We
assume that the vectors in {(s−m+1, t−m+1), . . . , (s−1, t−1)} are initialized to zero
so that if the L-BFGS strategy is employed in iteration k < m, then, as a consequence
of the condition (2.17), at most k updates will be performed.

Algorithm 5 Inverse Hessian approximation update
1: Take as input the quantities (xk , xk+1, ∇ f (xk ), ∇ f (xk+1), Wk ) from Algorithm 1 and the previously

computed sequence {(sk−m+1, tk−m+1), . . . , (sk−1, tk−1)}.
2: Set sk and tk by (2.10).
3: If sk = 0 or tk = 0, then set Wk+1 ← Wk , terminate, and return Wk+1.
4: If the curvature of the inverse Hessian approximation is bounded below in that (2.6b) holds and the step

size is sufficiently large in that (2.9) holds, then set rk , δk , and Wk+1 by (2.11)–(2.13), terminate,
and return Wk+1.

5: Choose wk ∈ [w, w] and initialize W (k−m)
k+1 ← wk I .

6: for increasing j ∈ {k − m + 1, . . . , k} do
7: Set r j and δ j by (2.14)–(2.15).
8: if (2.17) holds then
9: Set W ( j)

k+1 by (2.16).
10: else
11: Set W ( j)

k+1 ← W ( j−1)
k+1 .

12: Set Wk+1 ← W (k)
k+1, terminate, and return Wk+1.

In the remainder of this section, we prove properties of the inverse Hessian approx-
imation Wk+1 returned by Algorithm 5 during iteration k of Algorithm 1. First, we
state the result that the damped BFGS update (2.13) yields Wk+1 � 0. This fact is
well known [39], so we state it without proof.

Lemma 2.6 With Wk � 0, sk �= 0, and tk �= 0, the update (2.13) yields Wk+1 � 0.

Next, we state a result about the update (2.16). The proof of this result is similar to
that of [14, Lemma 3.2], so we exclude it here for the sake of brevity.

Lemma 2.7 Suppose that for θ ≥ θ > 0 we have

θ‖t‖22 ≤ t T W ( j−1)
k+1 t ≤ θ‖t‖22 for all t ∈ R

n . (2.18)
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Then, with (r j , s j , t j ) satisfying (2.17), the update (2.16) yields W ( j)
k+1 such that

(θ−1 + μ)−1‖t‖22 ≤ t T W ( j)
k+1t ≤ (2θ(1 + μ2) + μ)‖t‖2 for all t ∈ R

n . (2.19)

We conclude this section with the following lemma revealing that for any k, the
matrixWk+1 returned byAlgorithm5 is positive definite, and is also bounded in certain
important situations; see the similar result [14, Theorem 3.3].

Lemma 2.8 Algorithm 5 with input Wk � 0 yields Wk+1 satisfying the following.

(a) If sk = 0 or tk = 0, then Wk+1 ← Wk � 0.
(b) If sk �= 0, tk �= 0, and (2.6b) and (2.9) hold, then Wk+1 � 0.
(c) If sk �= 0 and tk �= 0, but at least one of (2.6b) or (2.9) does not hold, then

Wk+1 � 0 and for all t ∈ R
n we have

tT Wk+1t ≥ (w−1 + mμ)−1‖t‖22 (2.20a)

t T Wk+1t ≤
(
2m

(
1 + μ2

)m
w + μ

(
2m

(
1 + μ2

)m − 1

2
(
1 + μ2

) − 1

))
‖t‖22. (2.20b)

Proof If sk = 0 or tk = 0, then, by Step 3, Algorithm 5 sets Wk+1 ← Wk � 0, as
desired. Otherwise, if (2.6b) and (2.9) hold, then, by Step 4, Algorithm 5 sets Wk+1
by (2.13), which by Lemma 2.6 implies that Wk+1 � 0, as desired.

All that remains is to consider the case when sk �= 0 and tk �= 0, but at least one
of (2.6b) or (2.9) does not hold. In this case, by Steps 5–12, Algorithm 5 sets Wk+1

by choosing wk ∈ [w,w], initializing W (k−m)
k+1 = wk I � 0, applying (at most) m

updates of the form (2.16)with quantities satisfying (2.17), andfinally settingWk+1 ←
W (k)

k+1. Since, by Lemma 2.7, each application of (2.16) takes the bounds in (2.18) and
produces the wider bounds in (2.19), we may assume without loss of generality that
all m updates are performed, i.e., that (2.17) holds for all j ∈ {k − m + 1, . . . , k}.
Thus, starting with θ = θ = wk , the result of Lemma 2.7 can be applied repeatedly for
increasing j ∈ {k − m + 1, . . . , k}. In particular, as seen in the proof of Lemma 2.7,
the upper bound corresponding to the inverse of the approximation increases by the
constant factor μ > 0 with each update, so after m updates we obtain (2.20a). As for
the upper bound (2.20b), by applying Lemma 2.7 for increasing j ∈ {k−m+1, . . . , k}
we obtain for all t ∈ R

n that

t T Wk+1t ≤ (2m(1 + μ2)mwk + 2m−1(1 + μ2)m−1μ + · · · + 2(1 + μ2)μ + μ)‖t‖22
=

(
2m(1 + μ2)mwk + μ

(
2m(1 + μ2)m − 1

2(1 + μ2) − 1

))
‖t‖22,

which, since wk ∈ [w,w], implies that (2.20b) holds. ��
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3 Global convergence analysis

In this section, we prove that Algorithm 1 is globally convergent from remote starting
points. Specifically, with the restriction that

0 < ξ ≤
(
2m

(
1 + μ2

)m
w + μ

(
2m

(
1 + μ2

)m − 1

2
(
1 + μ2

) − 1

))−1

(3.1)

the result that we prove is the following.

Theorem 3.1 Algorithm 1 either terminates finitely with a stationary point for f or,
with probability one, it produces an infinite sequence of iterates {xk}. In the latter case,
with probability one, either { f (xk)} → −∞ or {εk} → 0 and every cluster point of
the iterate sequence {xk} is stationary for f .

We begin our analysis for proving Theorem 3.1 by summarizing the results of the
previous section to prove that Algorithm 1 is well-posed.

Lemma 3.2 Algorithm 1 is well-posed in the sense that it either terminates in Step 2
with a stationary point for f or, with probability one, it produces an infinite sequence
of iterates {xk}. In either case, for each k, the following hold true:

(a) The primal–dual solution (zk, dk, yk) of (2.5) satisfies ‖Gk yk‖Wk = ‖dk‖W−1
k

where dk is either zero or is a direction of strict descent for f from xk ∈ D.
(b) The step size αk is nonnegative, and is positive if pk ≥ p. If αk > 0, then either

the Wolfe conditions (2.7) hold or at least the Armijo condition (2.7a) holds.
(c) With probability one, xk+1 ∈ D is computed satisfying the (perturbed) Wolfe

conditions (2.8) or at least the (perturbed) Armijo conditions (2.8a) and (2.8c).
(d) If Step 6 is reached and (2.6) holds, then εk+1 ← ψεk; otherwise, εk+1 ← εk .
(e) If Step 7 is reached and (2.6b) and (2.9) hold, then Xk+1 ← {xk+1} along with

pk+1 ← 0; otherwise, with probability one,

Xk+1 ← ((Xk ∩ Bk+1) ∪ {xk+1} ∪ Xk+1) ⊂ Bk+1

is generated and pk+1 ≥ min{pk + 1, p}.
(f) If Step 9 is reached, then Wk+1 � 0, where if sk �= 0, tk �= 0, and at least one of

(2.6b) or (2.9) does not hold, then Wk+1 satisfies the bounds in (2.20).

Proof The result follows by the construction of Algorithms 1–5 along with the results
of Lemmas 2.2, 2.3, 2.5, 2.6, and 2.8. ��

For simplicity in our analysis until our proof of Theorem 3.1 at the end of this
section, we assume without loss of generality that Algorithm 1 produces an infinite
iterate sequence {xk}. Implicit in this assumption is that the procedures to compute
xk+1 and Xk+1 terminate finitely for all k, i.e., that these proceduresmay be considered
deterministic. This is reasonable since, by Lemma 3.2, these procedures terminate
finitely with probability one, and since there is nothing else that we aim to prove when
they fail to terminate finitely.
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In our next result, we prove that there exists an infinite subsequence of iterates in
which the algorithm produces a positive step size.

Lemma 3.3 There exists an infinite subsequence of iterations in which αk > 0.

Proof To derive a contradiction, suppose that there exists an iteration number k′ such
that for all k ≥ k′ we have αk = 0. By Lemma 3.2(b), this must mean that for all
k ≥ k′ we have pk ≤ p − 1. However, with αk = 0, we have that (2.9) does not hold,
which by Lemma 3.2(e) implies that the algorithm will set pk+1 ≥ min{pk + 1, p}.
This means that for some k′′ ≥ k′ we have pk′′ ≥ p, which contradicts the conclusion
that pk ≤ p − 1 for all k ≥ k′. ��

We now state, in the following lemma, a critical inequality for a subset of iterations.
The proof of this lemma is nearly identical to that of [14, Lemma 4.5].

Lemma 3.4 If (2.6b) holds during iteration k, then

f (xk+1) ≤ f (xk) − 1
2ηξ‖xk+1 − xk‖2‖dk‖2.

We now prove a useful lemma on approximate least W -norm elements in certain
types of sets of interest. For the lemma, recall that for W � 0 and nonempty bounded
S ⊆ R

n , we define PW (S) as the (oblique) W -projection of the origin onto cl conv S.
The lemma can be seen as a variation of [32, Lemma 3.1].

Lemma 3.5 Consider W � 0, a nonempty bounded set S ⊆ R
n, and a constant

β ∈ (0, 1). If 0 /∈ cl conv S, then there exists a constant κ > 0 such that for any
{u, v} ⊆ cl conv S the inequality ‖u‖2W ≤ ‖PW (S)‖2W + κ implies vT W u > β‖u‖2W .

Proof By definition, we have

PW (S) := argmin
x∈cl conv S

‖x‖2W ,

which implies (e.g., see [3, Proposition 1.1.8]) that for all v ∈ cl conv S we have

vT W PW (S) ≥ ‖PW (S)‖2W . (3.2)

We now prove the result by contradiction. If the result were false, then there exist
sequences {ui } ⊆ cl conv S and {vi } ⊆ cl conv S satisfying‖ui‖2W ≤ ‖PW (S)‖2W +1/ i
and vT

i W ui ≤ β‖ui‖2W for all i ≥ 0. Then, {ui } → u = PW (S) �= 0, and since S
is bounded, it follows that cl conv S is compact, meaning that we may assume that
{vi } → v ∈ cl conv S such that vT W u ≤ β‖u‖2W . On the other hand, we have from
(3.2) that vT W u ≥ ‖u‖2W for all v ∈ cl conv S, a contradiction. ��

Next, we state a technical lemma pertaining to the discrepancy between two related
measures of proximity to ε-stationarity. Given x ′ ∈ R

n , we define

Gk(x ′) := cl conv∇ f (Bεk (x ′) ∩ D),
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and, also given a tolerance ω > 0, we define

Tk(x ′, ω) :=
{

Xk ∈
pk∏

0

Bk : ‖PWk ({∇ f (x)}x∈Xk )‖2Wk
≤ ‖PWk (Gk(x ′))‖2Wk

+ ω

}
.

The purpose of the lemma is that it shows that for a sufficiently large sample set size
pk , an iterate xk sufficiently close to x ′, and any ω > 0, there exists a nonempty subset
of Tk(x ′, ω). The proof of this result is similar to those of [14, Lemma 4.7] and [32,
Lemma 3.2(i)], so it is excluded here for the sake of brevity.

Lemma 3.6 If pk ≥ n + 1, then for any ω > 0, there exists ζ > 0 and a nonempty
set T such that for all xk ∈ Bζ (x ′) we have T ⊆ Tk(x ′, ω).

We are now prepared to prove our main result.

Proof (Theorem 3.1) If Algorithm 1 terminates finitely with a stationary point for f ,
or if Algorithm 3 or 4 is called and fails to terminate finitely, then there is nothing
left to prove. Otherwise, by Lemma 3.2, Algorithm 1 produces an infinite sequence of
iterates {xk}. In this case, if { f (xk)} → −∞, then again there is nothing left to prove,
so for the remainder of our analysis we suppose that an infinite iterate sequence {xk}
is generated and that

inf
k→∞ f (xk) > −∞. (3.3)

Our first main goal is to show that {εk} → 0. To prove this, we consider two cases.

Case 1 Suppose there exists an infinite iteration index setK such that (2.6b) and (2.9)
hold for all k ∈ K. Then, along with (2.8a), we have

f (xk+1) − f (xk) ≤ −ηαk‖Gk yk‖2Wk
≤ −ηαξ2‖dk‖22 for all k ∈ K.

Since f is bounded below by (3.3), this implies that

lim
k∈K

‖dk‖2 = 0,

which, by Step 6 of Algorithm 1, implies that {εk} → 0.

Case 2 Suppose that at least one of (2.6b) or (2.9) does not hold for all sufficiently
large k. By the construction of Steps 3–4 of Algorithm 5, it follows that this algorithm
will set Wk+1 satisfying (2.20) for all such k, and hence, with (3.1), it follows that for
all sufficiently large k we have

ξ2‖d‖22 ≤ dT W −1
k+1d for all d ∈ R

n, (3.4)

or, equivalently,
t T Wk+1t ≤ ξ−2‖t‖22 for all t ∈ R

n . (3.5)
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Indeed, in this case, we may assume without loss of generality that these inequalities
hold for all k. We now prove that {εk} → 0 with probability one by showing that the
event that {εk} remains bounded away from zero has probability zero.

Suppose that there exists k′ such that εk = ε′ > 0 for all k ≥ k′. From this fact,
it follows that at least one of (2.6a), (2.6b), or (2.6c) does not hold for all k ≥ k′. In
fact, since (3.4) and Lemma 3.2(a) imply that (2.6b) holds for all k, we must have that
(2.6a) or (2.6c) does not hold for all k ≥ k′. However, by Lemma 3.3, we have the
existence of the infinite set Kα := {k : k ≥ k′ and αk > 0}. Thus, overall,

‖Gk yk‖Wk > νε′ for all k ∈ Kα. (3.6)

On the other hand, the fact that { f (xk)} is bounded below by (3.3), the sufficient
decrease condition (2.8a), Lemma 3.4 [since (2.6b) holds for all k], and the fact that
αk = 0 for all k ≥ k′ with k /∈ Kα together imply that

∞∑

k=k′
αk‖Gk yk‖2Wk

< ∞, and (3.7a)

∞∑

k=k′
‖xk+1 − xk‖2‖dk‖2 < ∞. (3.7b)

In conjunction with (3.6), the bound (3.7a) implies αk → 0. Similarly, (3.7b), (3.6),
Lemma 3.2(a), and (3.4) imply that {xk} is a Cauchy sequence, and hence xk → x ′
for some x ′ ∈ R

n . We claim that this implies the existence of an infinite iteration
index setKp := {k : k ≥ k′ and pk = p}, for which Lemma 3.2(b) impliesKp ⊆ Kα .
Indeed, if pk < p for all large k, then, since αk → 0, Step 3 of Algorithm 2 implies
that αk = 0 for all large k. However, as in the proof of Lemma 3.3, this leads to a
contradiction as we eventually find pk = p for some large k. Therefore, we can define
Kp as stated and know |Kp| = ∞. We continue by considering two subcases.

Subcase 2.a If x ′ is ε′-stationary for f , then ‖PWk (Gk(x ′))‖2Wk
= 0 for any Wk � 0.

Thus, with ω = (νε′)2 > 0 and (ζ, T ) chosen as in Lemma 3.6, there exists k′′ ≥ k′
such that xk ∈ Bζ (x ′) for all k ≥ k′′ and

‖Gk yk‖Wk = ‖PWk ({∇ f (x)}x∈Xk )‖Wk ≤ νε′ (3.8)

whenever k ≥ k′′, k ∈ Kp, and Xk ∈ T . Together, Eqs. (3.6) and (3.8) imply that
Xk /∈ T for all k ≥ k′′ with k ∈ Kp. However, this is a probability zero event since
the construction of Algorithm 4 implies that for all such k the set Xk will contain
newly generated points from Bk , meaning that with probability one there exists some
sufficiently large k such that Xk ∈ T , yielding (3.8).

Subcase 2.b Now suppose that x ′ is not ε′-stationary for f . It follows from
Lemma 3.2(b) [in particular, the Armijo condition (2.7a)] that for all k we have

f (xk + γ −1αkdk) − f (xk) ≥ −ηγ −1αk‖Gk yk‖2Wk
, (3.9)
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while Lebourg’s mean value theorem [12, Theorem 2.3.7] implies the existence of
x̃k ∈ [xk, xk + γ −1αkdk] and a corresponding subgradient vk ∈ ∂ f (x̃k) such that

f (xk + γ −1αkdk) − f (xk) = γ −1αkv
T
k dk . (3.10)

Together, Eqs. (3.9), (3.10), and the fact that dk = −Wk Gk yk imply

vT
k Wk Gk yk ≤ η‖Gk yk‖2Wk

. (3.11)

Moreover, with ω > 0 and (ζ, T ) chosen as in Lemma 3.6, there exists k′′′ ≥ k′ such
that xk ∈ Bε(x ′) with ε = min{ζ, ε′/3} for all k ≥ k′′′ and

‖Gk yk‖2Wk
= ‖PWk ({∇ f (x)}x∈Xk )‖2Wk

≤ ‖PWk (Gk(x ′))‖2Wk
+ ω

whenever k ≥ k′′′, k ∈ Kp, and Xk ∈ T ; hence, by Lemma 3.5, for such k we have

vT Wk Gk yk > η‖Gk yk‖2Wk
for all v ∈ Gk(x ′). (3.12)

Together, Eqs. (3.11) and (3.12) imply that vk /∈ Gk(x ′) whenever k ≥ k′′′, k ∈ Kp,
and Xk ∈ T . However, from the facts that dk = −Wk Gk yk and eT yk = 1 [recall
(2.5)] (3.5), Assumption 2.1, and [12, Proposition 2.1.2], we have for all k ≥ k′′′ that

‖dk‖2 = ‖Wk Gk yk‖2 ≤ ‖Wk‖2‖Gk yk‖2 ≤ ξ−1LBε (x ′),

where LBε (x ′) ≥ 0 is the Lipschitz constant for f over Bε(x ′); see the similar result
[32, Lemma 4.1]. That is, {‖dk‖2} is bounded for k ≥ k′′′. This, along with the
fact that αk → 0, implies that αk ≤ γ ε′/(3‖dk‖2) for all sufficiently large k, i.e.,
γ −1αk‖dk‖2 ≤ ε′/3 for all sufficiently large k. Combining this with the fact that xk ∈
Bε(x ′)with ε = min{ζ, ε′/3} implies ‖xk − x ′‖ ≤ ε′/3, we obtain that x̃k ∈ B2ε/3(x ′)
and hence vk ∈ Gk(x ′) for all sufficiently large k ≥ k′′′. Overall, since vk /∈ Gk(x ′)
whenever k ≥ k′′′, k ∈ Kp, and Xk ∈ T , yet vk ∈ Gk(x ′) for all sufficiently large
k ≥ k′′′, it follows that Xk /∈ T for all sufficiently large k ≥ k′′′ with k ∈ Kp. However,
since |Kp| = ∞, it follows as in the situation in Subcase 2.a that this is a probability
zero event.

We have proved that the situations in Subcases 2.a and 2.b have probability zero,
which implies that the event that there exists k′ such that εk = ε′ > 0 for all k ≥ k′
has probability zero. This result and the proof of Case 1 shows that {εk} → 0 with
probability one, as desired.

All that remains is to show that when {εk} → 0, all cluster points of {xk} are
stationary for f . The proof is exactly that of [14, Theorem 4.2, Case 2]. ��

4 Implementation and numerical experiments

In this section, we describe a C++ implementation of our algorithm along with the
results of numerical experiments that we performed to compare our code against other
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Table 2 Summary of input parameters for algorithm bfgs-gs

Parameter(s) Value(s) Description

ν 1 Stationarity measure tolerance

ψ 0.5 Sampling radius reduction factor

ξ 10−4 Model curvature threshold

η < η 10−8 < 0.9 Armijo–Wolfe line search constants

α ≤ α 10−4 ≤ 1 Step size thresholds

γ 0.5 Step size modification factor

J ≤ J 5 ≤ 10 Iteration thresholds for line search

p 100 Sample set size threshold

μ < 1 < μ 0.2 < 1 < 100 (L-)BFGS updating thresholds

w ≤ w 10−4 ≤ 1 (L-)BFGS updating thresholds

m 100 L-BFGS memory length

available software for solving problem (2.1). All of our experiments were performed
on a machine running Debian 2.6.32 with two 8-Core AMD Opteron 6128 2.0 GHz
processors and 32 GB of RAM.

4.1 An implementation and alternative software

Hereafter,we refer to our implementationofAlgorithm1, alongwith all the subroutines
described as Algorithms 2–5, as bfgs-gs. For convenience, bfgs-gs utilizes the linear
algebra library armadillo, version 4.300.0 [42]. A critical part of the implementation
is the method for solving the QP (2.5), for which we implemented a specialized active
set solver adapted from that proposed in [31]; further details for a similar Matlab
implementation are discussed in [14, Appendix].

Recalling Table 1, the values of the input parameters used in our implementation
are given in Table 2. The only exception is that we do not set a value for the parameter
J since, in bfgs-gs, we do not check whether the iterates or sample points lie in
the set D. That is, at all steps in the algorithm and its subroutines where one would
normally check for a point’s inclusion inD,bfgs-gs determines that the point is indeed
included. At such points, bfgs-gs assumes that a (sub)gradient of f is provided. Such
an approach was also employed in the gradient sampling algorithms in [7,13,14],
where it was argued—as we claim here in terms of our experiments—that, due to
the presence of a GS strategy, this is a reasonable approach for practically handling
nondifferentiability of f at certain points. Our choice of a sample set size threshold
of p = 100 was based on the fact that this value worked well in our tests, which all
involved n ≈ 50; see Sect. 4.2. Also, our model curvature threshold ξ does not satisfy
the upper bound in (3.1); instead, we chose a relatively large value that worked well
in our experiments.

We also use the following input parameters for bfgs-gs. We set the initial sampling
radius to ε0 ← 0.1 as this value generally worked well in our experiments. For the QP
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solver for subproblem (2.5), we set an optimality tolerance of 10−8 and a maximum
iteration limit of 103; i.e., the QP solver terminates once the �∞-norm of the residual
of its KKT conditions is less than this tolerance or the iteration counter exceeds this
limit. Regardless of the reason for termination of the QP solver, bfgs-gs uses the
search direction yielded by the final QP solver iterate; i.e., bfgs-gs does not terminate
if the QP solver fails to provide an accurate solution as determined by the KKT error
tolerance. For Algorithm 4, we found a good choice to be pk+1 ← 5 for all k. The
initial inverse Hessian approximation corresponding to k = 0 is set as Wk ← wk I ,
where the scalar wk is set as

wk ← 1

max{1,min{104, ‖∇ f (xk)‖2}} .

This is also the value forwk employed in the L-BFGS strategy in Algorithm 5. Finally,
bfgs-gs terminates when the iteration counter k exceeds 104 or when

εk ≤ ε f , (4.1a)

‖Gk yk‖Wk ≤ ε f , (4.1b)

‖Gk yk‖Wk ≥ ξ‖dk‖2, (4.1c)

and αk > 0, (4.1d)

for some constant ε f > 0. In our tests below, we consider ε f ∈ {10−4, 10−6}. Rem-
iniscent of (2.6) and (2.6′), these criteria require—recalling that Lemma 2.2 implies
‖Gk yk‖Wk = ‖dk‖W−1

k
—that the sampling radius has already been reduced to a suffi-

ciently small value and the current step is sufficiently small while the curvature of the
current Hessian approximation is sufficiently positive along dk .

For comparison purposes, we ran implementations of three other algorithms for
our numerical experiments. The first two are variants of the software available at
[40], which we refer to as hanso-bfgs and hanso-default. The former solver—
obtained by settingoptions.samprad = []—employs a standardBFGSmethod
with a weak Wolfe line search [35], whereas the latter solver—obtained by leaving
options.samprad at its default value—runs the same approach followed by the
application of a GS method as proposed in [7] to obtain an improved solution. Despite
the fact that these solvers are implemented inMatlab while bfgs-gs is implemented in
C++, we believe our comparisons are appropriate, at least since we focus on perfor-
mancemeasures other than CPU time. In particular, our method represents a technique
for incorporating aGS strategywhile optimizingwith a BFGS-type approach, whereas
hanso-bfgs exhibits the behavior of a BFGS method with no safeguarding for han-
dling nonsmoothness and hanso-default exhibits the behavior of an algorithm that
switches from BFGS to a GS method. It is worthwhile to note that by switching to a
GS method, hanso-default has theoretical convergence guarantees that are similar
to the algorithm proposed in this paper, whereas the BFGS algorithm in hanso-bfgs
only has the convergence guarantees provided in [35], which are limited to only a few
types of simple problems.
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The third algorithm to which we compare our code is the Fortran 77 solver of
Karmitsa [29], for which we used the available mex-driver for Matlab users. This
code implements the limited memory bundle method proposed in [24,25]. We refer to
this solver as lmbm, and include it in our experiments to illustrate the performance of
our approach compared to an alternative quasi-Newtonmethod for solving nonconvex,
nonsmooth optimization problems.

The input parameters for hanso-bfgs, hanso-default, and lmbm (besides
options.samprad = [] for hanso-bfgs) are left at their default values, except
that we set maximum iteration and CPU time limits on par with that chosen for bfgs-
gs. In particular, for hanso-bfgs, we changed the maximum number of iterations to
options.maxit = 1e+4. This value was also used for hanso-default, but it
should be noted that, once its BFGS method terminates, hanso-default may do as
many as 300 GS iterations—meaning that we allowed hanso-default to perform as
many as 104 (BFGS) + 300 (GS) iterations. For lmbm, we changed the maximum
number of iterations to IPAR(2) = 1e+4 and set the maximum time limit to a
large enough number that the solver never terminated due to a time limit in our tests.
Overall, none of the solvers that we tested had a CPU time limit that led to termination
in any of our experiments.

4.2 Test problems

For our numerical experiments, we measured the performance of all algorithms on
26 nonsmooth minimization problems, some convex and some nonconvex. The name
and source of each problem is indicated in Table 3. The problems from [25,36] were
also considered in [24], and all 26 were considered in [44].

All problems in this test set are scalable in the sense that they can be defined to
have different numbers of variables. We chose n = 50 for all problems, except for
the case of EIG_PROD that requires the number of variables to be the square of an
integer, for which we choose n = 64.We ran each problem ten times with ten different
starting points. For the first 20 problems, the first run was performed with the initial
point x0 stated in [24] while for the remaining nine runs we used a starting point that
was randomly generated from a Euclidean ball about x0 with radius ‖x0‖2. The initial
points in [24] satisfy x0 �= 0 and the initial points for each run were unique. For the
remaining six problems, we chose the initial point as a randomly generated point from
a Euclidean ball about e with radius ‖e‖2.

The last six problems in our test set require certain input parameters. Problems
TILTED_NORM_COND,CPSF, and NCPSF require symmetric positive definitematri-
ces with a specified condition number. To generate these, we used Matlab’s built-in
sprandsym function. Similarly, problem NUC_NORM requires an input matrix and
vector, which we generated using Matlab’s built-in randn function. For the matrix
required in EIG_PROD, we used the leading 8 × 8 submatrix of A from [1]; see also
the experiments in [7,13]. For GREIF_FUN, we multiplied the transpose of a 10×10
matrix randomly generated by randn with the matrix itself to create a symmetric
positive definite matrix A so that the n = 50 variables composing the 10× 5 variable
matrix X has the well-defined sum A + X X T .
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Table 3 Number, name, and
references for each problem in
our test set

# Name References

1 MAXQ [25]

2 MXHILB [25]

3 CHAINED_LQ [25]

4 CHAINED_CB3_I [25]

5 CHAINED_CB3_II [25]

6 ACTIVE_FACES [25]

7 BROWN_FUNCTION_2 [25]

8 CHAINED_MIFFLIN_2 [25]

9 CHAINED_CRESCENT_I [25]

10 CHAINED_CRESCENT_II [25]

11 TEST29_2 [36]

12 TEST29_5 [36]

13 TEST29_6 [36]

14 TEST29_11 [36]

15 TEST29_13 [36]

16 TEST29_17 [36]

17 TEST29_19 [36]

18 TEST29_20 [36]

19 TEST29_22 [36]

20 TEST29_24 [36]

21 TILTED_NORM_COND [35]

22 CPSF [35]

23 NCPSF [35]

24 EIG_PROD [35]

25 GREIF_FUN [21]

26 NUC_NORM [44]

We implemented all of the test problems in C++ for use by bfgs-gs. For the
remaining solvers, we implemented the first 20 test problems in Matlab and obtained
the code for the remaining six from the website of [44].

4.3 Numerical results

The purpose of presenting the results of our numerical experiments is to illustrate the
efficiency and reliability of our bfgs-gs solver in comparison tohanso-bfgs,hanso-
default, and lmbm with their default parameter settings when run on the 26× 10 =
260 problems in our test set. That is, we tested our 26 problem formulations, each run
with ten different starting points. Since the codes are written in various languages and
were run in different environments—i.e., compiled C++ versus interpreted Matlab
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code—we ignore CPU time and focus on the performance measures of iterations,
function evaluations, and gradient evaluations required until termination. Despite the
fact that we ignore CPU time, we claim that the per-iteration costs of the algorithms
underlying bfgs-gs, hanso-default, and lmbm are all relatively similar, especially
when averaged over all iterations that may be performed. Thus, by being successful in
terms of the performance measures that we consider, we claim that one should expect
success in terms of CPU time if all codes were implemented in the same language and
run in the sameenvironment.By contrast, the average per-iteration cost of hanso-bfgs
is typically less than all other solvers, at least when ignoring computations performed
to evaluate a stationarity measure. However, due to the fact that it is based on an
algorithm that lacks theoretical convergence guarantees, one would expect hanso-
bfgs to be less reliable. Indeed, this is evident in our numerical results.

When running our experiments with hanso-bfgs, hanso-default, and lmbm,
we observed that the default settings of these codes resulted in markedly different per-
formance. In particular, the default settings of lmbm led to runs that terminated after
many fewer iterations, function evaluations, and gradient evaluations as compared to
hanso-bfgs and hanso-default. However, when comparing solvers for nonsmooth
optimization problems, one should not necessarily rely upon the termination condi-
tions employed in a given implementation to have a sense of the quality of the provided
solutions. As opposed to smooth optimization where one can simply observe the mag-
nitude of the objective function gradient at the final iterate, stationarity measures for
nonsmooth problems require information about the subdifferential or ε-subdifferential
of the objective at the final iterate, which often can only be approximated. Hence,
rather than focus solely on the performance measures mentioned above, we investi-
gated further and found that the performance of lmbm as compared to hanso-bfgs
and hanso-default was not as good when considering a measure of quality of the
provided solutions. (We define our quality measure later in this section.) Based on
these observations, we could have adjusted the input parameters for all of the codes
in order to ensure that solutions of similar quality were found before a given code
was allowed to terminate. However, we found this to be difficult due to the numerous
termination conditions employed in the codes; some are based on stationarity mea-
sures, but others are based on changes in the function values, failure to compute a
direction of strict descent, etc. Hence, instead, we decided to leave the default inputs
for these solvers, but present results for two separate runs of our code: one with the
stationarity tolerance of ε f ← 10−4 in (4.1) and one with ε f ← 10−6. We show that
with the former setting, our code—bfgs-gs(10−4)—was able to obtain solutions of
similar quality as those obtained by lmbm, and could generally do so with fewer itera-
tions, function evaluations, and gradient evaluations. On the other hand, with the latter
setting, our code—bfgs-gs(10−6)—continued on to obtain solutions that often had
similar quality as those obtained by hanso-bfgs and hanso-default. Overall, our
goal in presenting two sets of results for our code is to demonstrate the versatility of
our software; it can quickly obtain solutions of reasonable quality, and, when desired,
it can be forced to continue to obtain higher solution accuracy.

Table 4 summarizes the termination flags returned by all of the codes for all of the
problems in our tests. We group the flags into three types:
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Table 4 Counts of termination flag types

Flag bfgs-gs (10−4) bfgs-gs (10−6) hanso-bfgs hanso-default lmbm

(1) 253 229 68 68 20

(2) 7 31 31 19 0

(3) 0 0 161 173 240

(1) a stationarity measure tolerance was satisfied;
(2) the maximum iteration limit was reached;
(3) other.

Termination flags of the last type indicate termination based on various occurrences
such as small changes in the objective, a failure to compute a direction of strict descent,
etc. Overall, Table 4 reveals that with both termination tolerances our code was very
successful in satisfying our termination criteria (4.1), whereas the other codes often
terminated due to other reasons.

Next, we illustrate the performance of the algorithms in terms of iterations, func-
tion evaluations, and gradient evaluations via profiles in the style of Dolan and Moré
[15]. Typically, when preparing such profiles, it is incumbent upon the user to decide
when a particular run should be considered successful or unsuccessful. In our experi-
ments, making this distinction was a difficult task due to the various termination flags
returned by hanso-bfgs, hanso-default, and lmbm. Indeed, if we only considered
a termination flag of type (1) to be the indicator for a successful run, then the profiles
would be skewed in favor of the codes that yielded such a flag most often, even though
we often found that other runs also yielded good quality solutions. Hence, having pre-
sented the counts for the termination types in Table 4 we present performance profiles
considering all runs by all codes to be successful. Despite the fact that this means,
e.g., that a termination flag of type (2) is not considered a failure, we believe that the
profiles are still meaningful since, for one thing, our iteration limit of 104 was quite
large; this means that if a code performed the maximum number of iterations, then
this had an adverse affect for the code in the profile, as it would if such a run were
considered a failure.

Figures 1 and 2 have the performance profiles we obtained in terms of iterations,
function evaluations, and gradient evaluations, respectively. Based on these profiles,
we have a few observations, all of which should be considered along with the results
in Table 4 and the solution quality measures that we present later in Table 5 to obtain
a complete picture of the results of our experiments. First, the profiles reveal the
observation that we made earlier about lmbm typically terminating after performing
fewer iterations, function evaluations, andgradient evaluations as compared tohanso-
bfgs and hanso-default. Second, the profiles reveal that bfgs-gs (10−4) often
outperforms lmbm in terms of all three measures; this is most interesting when one
observes that these methods often obtained solutions of similar quality, as we show
later. Third, the profiles reveal that bfgs-gs (10−6) is more similar to hanso-bfgs and
hanso-default in terms of all three measures than is bfgs-gs (10−4), so—in terms
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Fig. 1 Performance profile for iterations
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Fig. 2 Performance profiles for function (left) and gradient (right) evaluations

of our code and the solution quality results shown later—it is reasonable to compare
the results of bfgs-gs (10−6) to hanso-bfgs and hanso-default.

We are now prepared to consider the results of our experiments in terms of the
quality of the provided solutions. For this purpose, we collected the final iterates
provided by all of the codes on all of the problems in our test set. For each final iterate,
say x f , we randomly generated 103 points from a uniform distribution defined in a
Euclidean ball with radius 10−2 about x f . Then, using a Matlab implementation of
our QP solver, we computed the minimum Euclidean norm element of the convex hull
of the gradients of the objective evaluated at these points. The norm of this minimum-
norm vector represents a reasonable approximation of ε-stationarity (with ε = 10−2)
of x f with respect to f . This type of measure was employed in [35] as a certificate of
stationarity, except that, in that article, the authors employed iterates generated in the
algorithm as opposed to randomly generated ones. We could have used iterates in this
way as well, but we believe that by randomly generating the points—independent of
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Table 5 For each solver and each test problem, the geometric means of stationarity measures

Problem bfgs-gs (10−4) bfgs-gs (10−6) hanso-bfgs hanso-default lmbm

1 5.5115e−02 3.2624e−03 1.0931e−14 1.0931e−14 2.9769e−14

2 2.6008e−06 4.0027e−12 2.0981e−14 2.0981e−14 7.4413e−11

3 1.0032e−01 7.9324e−03 1.9953e−01 1.9953e−01 3.6743e−01

4 6.6657e−15 8.0674e−15 6.5293e−15 6.7015e−15 1.1089e−04

5 5.1371e−02 1.4784e−11 1.4116e−11 1.4116e−11 1.5361e−09

6 1.5343e−01 1.5343e−01 2.5912e−16 2.5912e−16 0.0000e+00

7 2.7203e−15 2.3324e−15 2.3766e−15 2.3766e−15 3.9072e−02

8 4.4343e+00 8.8031e−01 5.6539e+00 5.6539e+00 3.5372e+00

9 7.2550e−03 4.7572e−11 9.7894e−12 9.7894e−12 5.0344e−10

10 2.1219e+00 2.3921e+00 2.4665e+00 2.3562e+00 2.2678e+00

11 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 5.3619e−01

12 1.2268e−09 1.4630e−06 1.4011e−06 1.4011e−06 4.9237e−08

13 1.2418e−06 3.1166e−07 3.3843e−03 2.8826e−03 1.4463e−02

14 2.2987e+01 2.5143e+01 2.5657e+01 2.2958e+01 2.0717e+01

15 1.3441e+01 1.2830e+01 2.1905e+02 1.9625e+02 9.4820e−01

16 3.4085e−16 2.4520e−16 9.5007e−15 3.0778e−16 1.4537e−11

17 1.7747e−01 4.2699e−03 2.4028e−03 1.1057e−03 5.3772e−01

18 3.8821e−09 3.1459e−10 1.0375e−06 6.3327e−07 2.1108e−01

19 1.9198e−11 9.5458e−13 1.5087e−13 1.5087e−13 1.7270e−02

20 1.6003e+07 1.1290e+07 1.4061e+00 4.4723e−01 4.4147e+09

21 6.2899e−03 1.4594e−06 1.6764e−06 1.6764e−06 5.4393e−06

22 7.4602e−03 7.2946e−04 1.7976e−06 1.7976e−06 1.5031e−02

23 1.2722e−03 8.8772e−05 6.6831e−07 6.6831e−07 4.9783e−02

24 2.9884e−01 1.1171e−02 4.7271e−09 4.7271e−09 3.5170e−02

25 2.5222e−02 3.6621e−05 4.6504e−07 4.6504e−07 1.0049e−05

26 6.6878e−03 9.3793e−06 1.1201e−06 1.1201e−06 1.4454e−05

the algorithm iterates—we obtain a fairer measure for comparing solution quality for
the different codes.

For each solver and each of the 26 problems in our original test set, Table 5 pro-
vides the geometric means of the norms of the minimum Euclidean norm vectors—as
described in the previous paragraph—for the ten runs for each problem. We use geo-
metric means as opposed to arithmetic means so that each mean is not skewed by
one or a few large terms. Overall, one can see that, for all codes, results can vary
in terms of this measurement of solution quality. All of the solvers are competitive,
though, broadly speaking, the quality of the solutions provided by bfgs-gs (10−4)
and lmbm are not as good as those provided by bfgs-gs (10−6), hanso-bfgs, and
hanso-default. In terms of hanso-bfgs and hanso-default, we believe that the
improved solution quality is due to the termination criteria employed in the software.
In particular, these algorithms check for stationarity in a similar way that wemeasure it
here: they compute the minimum Euclidean norm element in the convex hull of gradi-
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ents evaluated around a given iterate. By contrast, bfgs-gs and lmbm have termination
criteria that are influenced by the employed quasi-Newton Hessian approximations.
Due to this fact, we could include in bfgs-gs an extra step to measure stationarity
using a Euclidean normmeasure, but we chose not to do this in order to avoid the extra
computational expense of generating additional sample points and solving a large QP
in our software. We feel that this is appropriate since, with its tightened stationarity
tolerance, bfgs-gs (10−6) is able to obtain solutions of similar quality as those yielded
by hanso-bfgs and hanso-default. That being said, there are cases where bfgs-
gs (10−6) yields better or worse solutions. For example, for a few starting points, our
solver performs poorly on problem 20.

5 Conclusion

We have proposed an algorithm for solving nonconvex, nonsmooth optimization
problems. Themain features of the algorithm are that it typically behaves as an unadul-
terated BFGS method—and, hence, it often has very low per-iteration computational
costs—but dynamically incorporates gradient sampling to ensure progress toward sta-
tionarity. We have proved that the algorithm has global convergence guarantees with
probability one, and, on a set of test problems, we have shown that an implementation
of it is competitive with—and in some ways outperforms—other available software
for solving such problems.

While the theoretical convergence guarantees of our algorithm in some cases rely
on an L-BFGS strategy that ensures sufficiently positive definite and bounded Hessian
approximations, one can consider a variant of our algorithm that allows these matrices
to approach singularity and tend to unboundedness as {εk} → 0 while preserving
our convergence guarantees. In particular, our convergence guarantees rely on the fact
that for a given sampling radius, the method eventually satisfies our conditions for
reducing this radius with probability one. Hence, one could allow our model curvature
threshold and lower (L-)BFGS updating threshold, namely ξ andμ, to decrease to zero
along with the sampling radius and the upper (L-)BFGS updating threshold, namely
μ, to correspondly increase to∞. Our theoretical convergence guarantees hold as long
as these parameters remain fixed until the sampling radius is reduced. However, we
decided not to propose this variant in the paper since it would requiremore complicated
conditions and a slightly more complicated analysis, and we did not see any benefits
of such a strategy in any numerical experiments that we performed.
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