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Abstract

We present a new strategy for choosing primal and dual steplengths in a primal–dual interior-point algorithm for convex
quadratic programming. Current implementations often scale steps equally to avoid increases in dual infeasibility between
iterations. We propose that this method can be too conservative, while safeguarding an unequally-scaled steplength approach
will often require fewer steps toward a solution. Computational results are given.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we consider the convex quadratic program in standard form:

min
x∈Rn

q(x) = 1

2
x T Qx + cT x s.t. Ax = b, x ≥ 0, (1.1)

where Q ∈ R
n×n is symmetric positive semidefinite, A ∈ R

m×n has full row rank, c ∈ R
n , and b ∈ R

m . The
corresponding dual program is given by

max
x,z∈Rn,y∈Rm

−1

2
x T Qx + bT y s.t. − Qx + AT y + z = c, z ≥ 0. (1.2)

An interior-point method applied to (1.1) and (1.2) will determine, from an initial point (x, y, z) with (x, z) > 0, an
appropriate step (�x,�y,�z) in the primal–dual space. If (�x,�y,�z) does not maintain positivity of the bounded
variables (x, z), then the algorithm must backtrack from this infeasible step. A simple technique is to update

(x+, y+, z+)← (x, y, z)+ α(�x,�y,�z),
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where the common steplength multiplier α is chosen as large as possible subject to the fraction to the boundary
rule. Scaling steps equally in this manner has been recommended in the literature; see for example [1,4,11] and
the references therein. The main advantage of this approach is the guaranteed reduction in infeasibility that will be
attained along this scaled Newton step. Empirical evidence has shown, however, that this approach is unnecessarily
conservative in numerous cases. Convergence can still be attained with an unequally-scaled steplength approach that
allows for longer steps. We propose the use of three separate steplength multipliers, one for each of �x , �y, and �z,
to allow more freedom in the primal and dual steps once we find that taking the full Newton step is prohibited.

Throughout the paper, e denotes the vector of 1s of appropriate dimension. All norms referenced are considered
Euclidean norms.

2. The primal–dual algorithm

The first-order optimality conditions, also known as the KKT conditions, for (x, y, z) to be a solution to (1.1) and
(1.2) are

Ax − b = 0 (2.3a)

AT y + z − Qx − c = 0 (2.3b)

Xz = 0 (2.3c)

(x, z) ≥ 0 (2.3d)

where we denote

X = diag(x) and Z = diag(z).

Newton’s method for solving (2.3a)–(2.3c) obtains a search direction as the solution to the linear system⎡
⎣−Q AT I

A 0 0
Z 0 X

⎤
⎦

⎡
⎣�x

�y
�z

⎤
⎦ =

⎡
⎣Qx + c − AT y − z

b − Ax
−Xz

⎤
⎦ ≡

⎡
⎣rd

rp

rc

⎤
⎦ . (2.4)

We refer to the norms of the residual vectors rp and rd as primal and dual infeasibility, respectively, and together as
the infeasibility of (x, y, z). The expression −r T

c e/n = xT z/n is known as the complementarity of (x, z). We are
satisfied with an estimate of the solution if (2.3d) holds and ‖(rp, rd , rc)‖ is below a given tolerance.

Primal–dual interior-point methods for quadratic programming have received much attention; see e.g. [1,4,8,9,13].
Rather than try to solve the system (2.3) directly, these methods include a centering term to promote steps toward the
interior of the feasible set. They aim to find points on the central path, which is defined as the set of points solving
(2.3) with (2.3c) replaced by

Xz = γ e (2.5)

for some γ > 0. The search direction is obtained by solving⎡
⎣−Q AT I

A 0 0
Z 0 X

⎤
⎦

⎡
⎣�x

�y
�z

⎤
⎦ =

⎡
⎣ rd

rp

rc + γ e

⎤
⎦ , (2.6)

where γ = σμ such that σ ∈ (0, 1) and μ = x T z/n to reflect the complementarity of the current iterate. Steplength
multipliers (αx , αy, αz) are chosen to ensure that the update

(x+, y+, z+)← (x, y, z)+ (αx�x, αy�y, αz�z) (2.7)

maintains (x+, z+) > 0.
Let us consider the effect of the steplength multipliers on primal–dual infeasibility and complementarity of the

following iterate. We find from (2.6) and (2.7)

r+p (αx ) ≡ b − Ax+

= b − A(x + αx�x)

= (1− αx )rp,
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r+d (αx , αy, αz) ≡ Qx+ + c − AT y+ − z+

= Q(x + αx�x)+ c − AT (y + αy�y)− (z + αz�z)

= rd + αx Q�x − αy AT �y − αz�z
= (1− αy)rd + (αx − αy)Q�x + (αy − αz)�z, (2.8)

and

μ+(αx , αz) ≡ x+T
z+/n

= (x + αx�x)T (z + αz�z)/n

= μ+ αx�x T z/n + αz x T �z/n + αxαz�x T �z/n.

Notice that if a common steplength multiplier α is used, then primal and dual infeasibility will decrease by the common
factor (1− α). Moreover, for α > 0 sufficiently small, we find

μ+(α) = μ(1− α(1 − σ))+ α2�x T �z/n < μ

so complementarity will also decrease.
When Q = 0, as in linear programming, steps are chosen as large as possible as long as the bounded variables

(x, z) remain positive. As can be seen above, primal and dual infeasibility will decrease the most when choosing
the largest allowable αx and αy = αz . The presence of a nonzero Q in (2.8), however, couples the primal and dual
steplength multipliers and dual infeasibility may increase if large unequal steplength multipliers are used; this may
cause the algorithm to diverge. Any unequally-scaled steplength strategy must take these considerations into account.

In the algorithm proposed in this paper we require that the steplengths provide a sufficient decrease in the merit
function

φ(x, y, z) = ‖Ax − b‖2 + ‖AT y + z − Qx − c‖2 + x T z; (2.9)

this will guarantee global convergence of the algorithm. This choice of φ is made for three main reasons. First, it is
closely related to the norm of the KKT residual vector, which must be small in the vicinity of the optimal solution.
Second, slightly more weight is applied to large (greater than 1) primal and dual infeasibility terms. This is reasonable
since feasibility, or the state of having ‖rp‖ and ‖rd‖ below a given tolerance, should generally be achieved at least as
fast as reduced complementarity on the solution path. Finally, in Section 4, we will show that the unique minimum of
φ can easily be found in a particular set of steplength multiplier vectors that guarantees a decrease in the function.

3. Steplength strategies

In light of the difficulties imposed by a nonzero quadratic term in (1.1), a conservative strategy is generally
employed. In this section we outline this approach and remark on an alternative method proposed in [8].

Current practice is to set primal and dual steplength multipliers to a common value while preserving the positivity
of (x, z). That is, to set (αx , αy, αz) = ᾱe where

ᾱx = β

[
max

k=1,...,n
{1,−�xk/xk}

]−1

, ᾱz = β

[
max

k=1,...,n
{1,−�zk/zk}

]−1

for a given 0 < β < 1 and

ᾱ = min{ᾱx , ᾱz}.
This process of setting (αx , αz) < (ᾱx , ᾱz) is known as the applying the fraction to the boundary rule. As seen in
Section 2, this strategy leads to a guaranteed reduction in primal and dual infeasibility. Once feasibility is obtained,
one can choose α ∈ (0, ᾱ] for a guaranteed reduction in complementarity. More precisely, at a feasible point we can
choose α to solve

min
α∈R

(x + α�x)T (z + α�z) s.t. 0 < α < ᾱ. (3.10)
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An alternative approach has been proposed by Mészáros in [8]. He observes that feasibility can be obtained more
rapidly by choosing unequal steplength multipliers based on the efficient set of points for the quadratic multiobjective
problem

min ‖r+p (αx )‖
min ‖r+d (αx , αz)‖

}
s.t.

0 ≤ αx ≤ ᾱx ,

0 ≤ αz ≤ ᾱz .
(3.11)

Note that he maintains αy = αz . A point (α∗x , α∗z ) is in the efficient set of (3.11) if, for any (αx , αz) satisfying the
bounds in (3.11), we have

‖r+p (αx )‖ < ‖r+p (α∗x )‖ ⇒ ‖r+d (α∗x , α∗z )‖ < ‖r+d (αx , αz)‖;
‖r+d (αx , αz)‖ < ‖r+d (α∗x , α∗z )‖ ⇒ ‖r+p (α∗x )‖ < ‖r+p (αx )‖.

(3.12)

In other words, the pair (α∗x , α∗z ) is not dominated by any other feasible pair. Assuming rp �= 0, rd �= 0, and Q�x �= 0,
conditions which are normally achieved in practice, the efficient set can be shown to be equal to

{(αx , α
∗
z ) | α∗x ≤ αx ≤ ᾱx }, (3.13)

where (α∗x , α∗z ) is chosen as the pair that minimizes dual infeasibility over the set

{(αx , αz) ≥ 0 | αx = ᾱx or αz = ᾱz}. (3.14)

In particular, Mészáros chooses (αx , αz) = (max{ᾱ, α∗x }, α∗z ). Once feasibility is attained, he also chooses the common
steplength multiplier found by solving (3.10).

4. A new steplength strategy

When an adequate globalization technique is not used, setting the bounded steplength multipliers to their largest
permissible values (αx = ᾱx , αz = ᾱz) may cause divergence. A strategy such as those described in Section 3 must be
employed. However, these particular methods have some disadvantages. Equal steplengths are guaranteed to reduce
primal and dual infeasibility, but, as observed by Mészáros, other choices of (αx , αy, αz) may reduce primal and dual
infeasibility even more. Strictly observing the step’s effect on infeasibility of the next iterate may not be the most
efficient method either. We stress that the third measure, complementarity, should not be ignored.

Large unequally-scaled steps are often accepted in algorithms for linear and nonlinear programming; see [7] and
[2,3,10,12], respectively. We conjecture that such a choice can be beneficial in convex quadratic programming as well,
as long as necessary globalization techniques are implemented; e.g. the observation of a merit function φ. We propose
a method for selecting steplengths with motivation behind both the specific merit function observed as well as the
particular subset of feasible multipliers considered. Rather than perform the costly minimization of φ (see (2.9)) over
the entire feasible set, we choose a set over which we can guarantee a reduction in the function via a subproblem whose
unique solution requires minimal extra computational effort compared to the equally-scaled steplength approach. By
creating a separate multiplier for the step in the dual variables �y, which can be freely scaled, we allow more freedom
of movement in the dual space.

A risk in using Mészáros’ method is the possible selection of the multipliers (ᾱx , 0, 0) over a number of consecutive
iterations, if this choice minimizes primal and dual infeasibility of the following iterate. This myopic choice may
stagnate the algorithm as no step is taken in the dual space. Therefore, we would generally prefer to promote long
steps over the search space. If short steplengths are to be selected, say for a large decrease in complementarity, then
we wish to take advantage of the guaranteed simultaneous reduction in primal and dual infeasibility characteristic
of equally-scaled steplengths. We also aim to provide a decrease in the merit function at least as that obtained by
equally-scaled steplengths. We now present our method formally.

Let αy be an unrestricted steplength multiplier. The multipliers (αx , αz) will be chosen based on the two sets

A1 = {(α, α) | 0 ≤ α ≤ ᾱ}
and

A2 =
{{(ᾱ, αz) | ᾱ ≤ αz ≤ ᾱz} if ᾱx ≤ ᾱz;
{(αx , ᾱ) | ᾱ ≤ αx ≤ ᾱx } if ᾱx ≥ ᾱz .
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Fig. 1. A1 ∪A2 if ᾱx ≤ ᾱz .

Fig. 2. A1 ∪A2 if ᾱx ≥ ᾱz .

Their union, A1 ∪A2, can be visualized as the bold line segments in Figs. 1 and 2.
We will choose steplength multipliers as the unique solution to

min
αx ,αy ,αz∈R

φ(x + αx�x, y + αy�y, z + αz�z) s.t. (αx , αz) ∈ A1 ∪A2. (4.15)

Notice that every feasible truncated Newton step is considered in this approach, so this choice of steplength multipliers
will decrease the merit function at least as much as equally-scaled steplengths. Moreover, we have the following
remark.

Remark 4.1. The global optimum of (4.15) can be determined by solving two 2-dimensional quadratic programs,
each with simple bound constraints. (Restricting αy = αz , the subproblems are 1-dimensional quadratics with simple
bounds.)

We describe these quadratic problems, so that the effort of forming and solving them can easily be quantified.
Define

r =
[

rp

rd

]
, s =

[−A
Q

]
�x, t =

[
0
−AT

]
�y, and u =

[
0
−I

]
�z,

so the objective function of (4.15) reduces to

φ(x + αx�x, y + αy�y, z + αz�z) = ‖r + αx s + αy t + αzu‖2 + (x + αx�x)T (z + αz�z).

The first trial point, which we define as the minimizer of φ over the set A1, can be computed as the solution to

min
αx ,αy∈R

q1(αx , αy) s.t. 0 ≤ αx ≤ ᾱ,
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with αz = αx , and where q1 is a quadratic function of the form (1.1) with

Q =
[
(s + u)T (s + u)+�x T �z (s + u)T t

(s + u)T t tT t

]
, c =

⎡
⎣r T (s + u)+ 1

2

(
�x T z + x T �z

)
r T t

⎤
⎦ .

If ᾱx ≤ ᾱz , then the trial point in A2 is given by αx = ᾱx and the solution to

min
αy ,αz∈R

q2(αy, αz) s.t. ᾱ ≤ αz ≤ ᾱz,

where q2 is given by (1.1) with

Q =
[

tT t tT u
tT u uT u

]
, c =

⎡
⎣ r T t + ᾱx sT t

r T u + 1

2
x T �z + ᾱx

(
sT u + 1

2
�x T �z

)
⎤
⎦ .

Otherwise, the trial point is given by αz = ᾱz and the solution to

min
αx ,αy∈R

q3(αx , αy) s.t. ᾱ ≤ αx ≤ ᾱx

where q3 is defined by (1.1) with

Q =
[

sT s sT t
sT t tT t

]
, c =

⎡
⎣r T s + 1

2
�x T z + ᾱz

(
sT u + 1

2
�x T �z

)

r T t + ᾱz tT u

⎤
⎦ .

We choose the one, of these two trial points, with a smaller merit function value. Recalling the analysis in Section 2,
we note that a reduction in the merit function is guaranteed over this set.

We claim that the extra work required to compute and compare the trial steplengths above is small, and reduces to
a handful of inner products. These products are used to construct the components of the subproblems and evaluate the
merit function at the resulting trial points. In fact, what appear to be the most costly operations, namely the required
matrix-vector products A�x , Q�x , AT �y that define s and t , are necessary in other parts of the algorithm. For
example, they appear in the calculations of iterative refinement for the solution of the linear system (2.6). Therefore,
we can compare our method to the methods described in Section 3 simply by observing iteration counts. The required
run-time per iteration will not increase significantly. We also note that the matrices in the subproblems for A2 are
positive semidefinite, so the trial point in this set is obtained by solving a 2-dimensional convex quadratic program.

5. Computational results

A Matlab code was written to solve a variety of problems from the Maros and Mészáros test set; see [6]. Problems
from this set, for which AMPL models were available, were selected based on size—fewer than 10,000 variables.
Many of the larger problems required more memory than was available, but this is no issue as the techniques
developed in this paper are similarly effective on problems of all sizes. Steplength multipliers were chosen according
to an equally-scaled steplength strategy (“eq.”) where (αx = αy = αz = ᾱ), Mészáros’ method where we set
(αx , αz) = (max{ᾱ, α∗x }, α∗z ) (“Més.”), and our new steplength strategy described in Section 4 (“new”). We employed
Matlab’s quadprog function to solve the subproblems for determining (αx , αy , αz) during each iteration.

Table 1 contains iteration counts for the problems solved. The relative differences between equally-scaled
steplengths and Mészáros’ method and between equally-scaled steplengths and our method are given, rounded to
the nearest integer. Negative numbers refer to an improvement over employing equally-scaled steplengths. Problems
were considered solved when the norm of the KKT residual vector was less than 10−6.

Notice that by employing Mészáros’ method we fail to solve the problem qsierra before the maximum number
(200) of iterations is reached. The algorithm continually chooses steplength multipliers of the form (ᾱx , 0, 0) which,
as described in Section 4, causes no step to be taken in the dual space. Consequently, progress towards the optimal
solution is slowed considerably.

The results are summarized in Fig. 3 in terms of a logarithmic performance profile described in [5]. Essentially,
the values of each function on the vertical axis indicate the percentage of instances the algorithm with that particular
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Table 1
Iteration counts for three steplength strategies

Problem Iter. Rel. diff. Problem Iter. Rel. diff.
eq. Més. new Més. (%) new (%) eq. Més. new Més. (%) new (%)

aug3dcqp 19 19 20 0 5 qfffff80 63 60 53 −5 −16
aug3dqp 20 20 19 0 −5 qisrael 51 49 45 −4 −12
cvxqp1 19 18 19 −5 0 qpcboei2 40 39 50 −3 25
dual1 13 13 14 0 8 qsc205 21 21 20 0 −5
dual2 9 9 10 0 11 qscagr25 30 28 25 −7 −17
dual3 9 9 11 0 22 qscagr7 29 48 22 66 −24
dual4 9 9 9 0 0 qscfxm1 45 45 39 0 −13
dualc1 17 20 17 18 0 qscfxm2 56 57 48 2 −14
dualc2 15 15 15 0 0 qscfxm3 59 57 51 −3 −14
dualc5 9 9 9 0 0 qscrs8 43 39 33 −9 −23
dualc8 11 9 9 −18 −18 qscsd1 14 13 13 −7 −7
hs021 9 9 8 0 −11 qscsd6 20 20 19 0 −5
hs035 10 10 10 0 0 qscsd8 19 18 17 −5 −11
hs053 4 4 4 0 0 qsctap1 27 26 24 −4 −11
hs076 12 12 12 0 0 qsctap2 24 24 21 0 −13
hs35mod 9 9 9 0 0 qsctap3 26 25 22 −4 −15
hues-mod 23 34 23 48 0 qseba 55 54 52 −2 −5
huestis 24 23 17 −4 −29 qshare1b 40 38 34 −5 −15
lotschd 12 9 7 −25 −42 qshare2b 30 31 25 3 −17
mosarqp1 17 17 17 0 0 qshell 61 61 51 0 −16
mosarqp2 19 19 19 0 0 qship04l 23 23 20 0 −13
q25fv47 50 48 44 −4 −12 qship04s 22 22 20 0 −9
qadlittl 22 20 19 −9 −14 qship08l 26 26 26 0 0
qafiro 16 13 13 −19 −19 qship08s 26 25 26 −4 0
qbandm 32 32 29 0 −9 qship12s 28 27 29 −4 4
qbeaconf 24 22 20 −8 −17 qsierra 43 – 36 – −16
qbrandy 30 26 27 −13 −10 qstandat 23 20 19 −13 −17
qetamacr 38 38 42 0 11 tame 4 4 4 0 0

Fig. 3. Performance profile for iteration counts.

choice of steplength multipliers solves a problem in the least number of iterations. The values fail to add to one when
ties are present. The rightmost function values illustrate the robustness of the solver for each choice of steplength
multipliers; i.e., the percentage of time that a problem is solved.
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We observe that the new strategy produces a fairly consistent reduction in required iterations when compared to
the common technique of choosing equally-scaled steplengths. Furthermore, the gains are more pronounced on more
difficult problems. We also tested a variant of the new algorithm in which the dual steplengths are equal, i.e., αy = αz ,
and observed that it is slightly less efficient.
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