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SYNOPTIC ABSTRACT

Structural connections between m � n
���

1 � 1 � -matrices A such that A has the

maximum number of
�
2 � 2 � -submatrices with nonzero determinant and m � n���

1 � 1 � -matrices B that maximize det
�
BtB � are explored. The two types of

matrices can be defined as solutions to two instances of the same optimization

problem. The focus is on matrices satisfying the former property, specifically the

most difficult case when A is n � n with n � 4k � 1, k a natural number.

Constructive approaches and a tabu search are developed and are found to provide

near-optimal solutions for 13 � n 	 41. The best known solutions to date are

found for n � 4k � 1 	 41.
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1. INTRODUCTION

The primary focus of our work is to understand the structure of
�
0 � 1 � -matrices

with a maximum number of odd
�
2 � 2 � -submatrices. An odd submatrix is one

having the sum of its entries equal to an odd integer. As in many other

optimization problems in combinatorial matrix theory, it is useful to convert a

problem on
�
0 � 1 � -matrices to a problem on

���
1 � 1 � -matrices simply by changing

all zero entries to
�

1. In this case the conversion leads to an objective function in a

more appealing analytic form. We can rephrase our problem as one involving

determinants:

Problem 1: Determine an m � n
���

1 � 1 � -matrix A such that A has the maximum

number of
�
2 � 2 � -submatrices with nonzero determinant.

A 2 � 2
���

1 � 1 � -matrix has an odd number of ones if and only if it has a nonzero

determinant. A second problem with determinants is:

Problem 2: Determine the maximum value of det
�
AtA � over all

���
1 � 1 � -matrices

A of size m � n.

Problems 1 and 2 are closely related to the study of Hadamard matrices. A

Hadamard matrix has the maximum possible determinant (in absolute value) of

any n � n complex matrix A with elements � ai j � 	 1 (see Hadamard (1893) or

Brenner and Cummings (1972)). Problems 1 and 2 are also related to certain

optimal design problems in statistics (see Hedayat and Zhu (2003) and Hedayat et

al. (1999)). For example, solutions to Problem 2 are D-optimal designs in the

statistics literature. Other authors, such as those in Marks et al. (2003), have noted

that Problem 1 is related to computing bounds on Turan numbers (see also deCaen

et al. (1988)). While Problem 1 is thoroughly covered in Marks et al. (2003), we

present different approaches to the problem including computational techniques

that advance the study of the remaining unsolved case, namely, n � n matrices with

n � 4k � 1, k a natural number.

In Section 2 we present results relating Problems 1, 2, and Hadamard matrices

via the unifying concept of compound matrices. In Section 3 we describe

combinatorial techniques that can be used to study Problem 1. In Section 4 we

present results for Problem 1 under the assumption that the Hadamard matrix

conjecture is true, i.e., there always exists an n � n Hadamard matrix if n � 4k for
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some integer k � 0. We will highlight matrices that attain the optimal values for

both Problems 1 and 2. Section 5 is devoted to computational techniques we

developed. Finally, in Section 6 we present suggestions for further research on

these problems.

The following notation will be used throughout the paper. Unless otherwise

noted, all matrix entries are restricted to
�

1 and 1.

Am � n � An: the set of m � n and n � n matrices, respectively.
M �m � n � M �n: the maximum number of odd

�
2 � 2 � -submatrices taken over the set Am � n

and An, respectively.
D �m � n � D �n: the maximum determinant of matrices taken over the set Am � n

and An, respectively.
M

�
A � : the number of odd

�
2 � 2 � -submatrices in A

Jm � n, Jn: the matrix with entries all equal to 1 of size m � n
and n � n, respectively

Hn: the set of Hadamard matrices of order n.

2. COMPOUND MATRICES

Given an m � n matrix A and k 	 min
�
m � n � , the kth compound matrix of A is

the � mk � � � nk � matrix Ck
�
A � whose entries are the determinants of the k � k

submatrices of A arranged in lexicographical order. That is, submatrices

corresponding to common row indices are ordered lexicographically based on

column indices across a row of Ck
�
A � and similarly for submatrices corresponding

to common column indices. For example, if A is 3 � 4 and d � i � j;k � l � denotes the

determinant of the submatrix of A lying in rows i � j and columns k � l, then

C2
�
A � �

	

d � 1 � 2;1 � 2 � d � 1 � 2;1 � 3 � d � 1 � 2;1 � 4 � d � 1 � 2;2 � 3 � d � 1 � 2;2 � 4 � d � 1 � 2;3 � 4 �
d � 1 � 3;1 � 2 � d � 1 � 3;1 � 3 � d � 1 � 3;1 � 4 � d � 1 � 3;2 � 3 � d � 1 � 3;2 � 4 � d � 1 � 3;3 � 4 �
d � 2 � 3;1 � 2 � d � 2 � 3;1 � 3 � d � 2 � 3;1 � 4 � d � 2 � 3;2 � 3 � d � 2 � 3;2 � 4 � d � 2 � 3;3 � 4 �

���
Problem 1 reduces to the search for a matrix A � Am � n with the maximum number

of nonzero entries in C2
�
A � . Consider the following theorem.

Theorem 1: Let A � Am � n ��� �
1 � 1 � � . Then,

M
�
A � � 1

4
E2

�
eig

�
AAt � �
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Proof. Every odd
�
2 � 2 � -submatrix in A gives rise to an entry of C2

�
A � equal to�

2. Therefore, the total number of nonzero entries in C2
�
A � � � trC2

�
A � C2

�
A � t ��� 4.

By properties of compound matrices,

trC2
�
A � C2

�
A � t � trC2

�
AAt � � E2

�
λ1 �

  
� λm � �

where λ1 �
  

� λm are the eigenvalues of AAt , and

E2
�
x1 �
  

� xm � � ∑
1 � i � j � m

xix j

is the 2-elementary symmetric function (see Marshall and Olkin (1979) (section

19.F)).

By Theorem 1, Problems 1 and 2 can be formulated in terms of optimizing two

instances of the same objective function. That is, Problems 1 and 2 can be

rephrased as finding the maximum value of trC2
�
AAt � and trCn

�
AAt � , respectively.

In general, we have the following result.

Theorem 2: Suppose S is the set of real m � n matrices A, 1 � m 	 n, such that

AAt has diagonal entries all equal to n. For all A � S,

trCk
�
AAt � 	 Ek

�
m �
  

� m �
with equality if and only if AAt � nIm.

Proof. Let AAt have eigenvalues x1 � x2 �����	�
� xm � 0. Then

x1 � x2 � ����� � xm � tr
�
AAt � � mn, and

tr
�
AAt ��� ∑

1 � i1 ������ ik � m

xi1 ����� xik �

see Marks et al. (2003) (section 19.F). By the theory of majorization (see Marks et

al. (2003) section 4.A) the conclusion follows.

Thus, any m � n submatrix of an n � n Hadamard matrix is a solution to

Problems 1 and 2. For further information on Hadamard matrices see

http://mathworld.wolfram.com/HadamardMatrix.html.
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3. COMBINATORIAL TECHNIQUES

Since a matrix B satisfying M
�
B � � M �m � n can be derived from a square matrix

A with M
�
A � � M �n (see Marks et al. (2003)), we limit our attention to square

matrices. The following theorem is proved in Marks et al. (2003).

Theorem 3: Let k �i � j denote the number of positions in rows (columns) i and j

such that the two rows (columns) agree, i.e. both have entries 1 or both
�

1.

Similarly, let k �i � j denote the number of positions in rows (columns) i and j such

that the two disagree. Then, the number of odd
�
2 � 2 � -submatrices over rows

(columns) i and j is k �i � j � k �i � j.
By Theorem 3, the number of odd

�
2 � 2 � -submatrices in A is:

M
�
A � � ∑

1 � i � j � n

k �i � j � k �i � j


(3.1)

There are many matrices with the same number of odd
�
2 � 2 � -submatrices. The

following theorem is proved in Marks et al. (2003).

Theorem 4: Given a matrix A � An, the matrix A
�
obtained by any combination of

the following operations satisfies M
�
A � � M

�
A

� � .

1. Take the transpose.

2. Permute any pairs of rows or any pairs of columns.

3. Multiply any row or column by
�

1.

Upper and lower bounds on M �n are easily established. First, M
�
A � � 0 for any

A � An with equality if and only if A is equivalent to Jn through the operations

given in Theorem 4. For even n, the maximum number of odd
�
2 � 2 � -submatrices

within any pair
�
i � j � of rows or columns is attained if and only if k �i � j � k �i � j � n � 2.

In this case, we say
�
i � j � is a perfect pair (see Marks et al. (2003)). For odd n, the

maximum number of odd
�
2 � 2 � -submatrices within any pair

�
i � j � of rows or

columns is attained if and only if k �i � j � �
n � 1 ��� 2 and k �i � j � �

n
�

1 ��� 2, or vice

versa. In this case, we say
�
i � j � is a near-perfect pair (see Marks et al. (2003)). In
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summary, bounds for A � An are:

n is even � 0 	 M
�
A � 	

� n
2 � 2 � n

2 � � (3.2)

n is odd � 0 	 M
�
A � 	

� n
�

1
2 � � n � 1

2 � � n
2 �


(3.3)

If ai and a j are the ith and jth rows of A, respectively, then k �i � j � k �i � j � ai � a j.

Consequently, we have the following definition.

Definition 1: If the inner product of all pairs of rows in the matrix A is equal to 0,

then A is perfect. If the inner product of all pairs of rows in the matrix B is equal to�
1, then B is near-perfect.

4. OPTIMAL SOLUTIONS

In this section, optimal solutions of Problem 1 are provided if we assume that

the Hadamard Conjecture is valid. The problem can be split naturally into four

distinct cases based on the value of n. For the first three cases, proofs of optimum

values exist and are described along with some alternative approaches that have

been considered. The final case, however, remains open for n � 13. In addition,

throughout the proofs we make use of the fact that eig
�
BBt � are the same as

eig
�
BtB � .

4.1. n � 4k and Hadamard Matrices

According to Theorem 2 and Definition 1, A � Hn attains M
�
A � � M �n ,

det
�
A � � D �n, and A is perfect. A large sample of Hadamard matrices can be found

in Sloane. The structure of Hadamard matrices suggests that they can potentially

be used to find matrices A satisfying M
�
A � � M �n for values of n �� 4k by adding or

deleting the appropriate number of rows and columns. We consider this technique

for the remaining cases.
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4.2. n � 4k
�

1

The optimum value M �n for each n in this case has been established in Marks et

al. (2003). An alternative proof based on compound matrices is given below.

Theorem 5: Given A � Hn � 1, the matrix formed by the removal of any row and

any column from A is a matrix B having a total of

M
�
B � �

� n
�

1
2 � � n � 1

2 � � n
2 �

odd
�
2 � 2 � -submatrices. Furthermore, B is near-perfect and M

�
B � � M �n .

Proof. Let A � Hn � 1, so

eig
�
AtA � � �

n � 1 �
  

� n � 1� ��� �

n � 1

� 

Perform the necessary operations from Theorem 4 so that each entry of row i and

column j is 1. The matrix B obtained via the removal of row i and column j

satisfies:

BtB � �
n � 1 � In

�
Jn


The eigenvalues of the first and second term of the right-hand-side constitute the

sets

S1 � �
n � 1 �

  
� n � 1 � and S2 � �

n � 0 �
  

� 0� ��� �

n � 1

� �
respectively. Consequently,

eig
�
BtB � � eig

� �
n � 1 � In

�
Jn � � �

1 � n � 1 �
  

� n � 1� ��� �

n � 1

� �
and

M
�
B � � 1

4
E2

�
eig

�
BtB � �

� 1
4

� �
n
�

1 � � n � 1 � � � n
�

1
2 � �

n � 1 � 2 �
�

� n
�

1
2 � � n � 1

2 � � n
2 �
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The only known cases for the value of D �n where n � 4k
�

1 are n � 3 � 7 � and

11 (see Hedayat and Zhu (2003)). Of these only the matrix attaining det
�
A � � D �3

satisfies M
�
A � � M �3 . As far as we know there are no apparent connections

between the matrices attaining optimal values for Problems 1 and 2 when

n � 4k
�

1.

4.3. n � 4k
�

2

The optimum value M �n for each n in this case has been established in Marks et

al. (2003). We sketch a proof of the following theorem using compound matrices.

Theorem 6: Given A � Hn � 2, a matrix B formed by the removal of two rows and

two columns from A has a maximum of

M
�
B � � 1

8
n4 � 1

8
n3 � 1

4
n2 � n

2

odd
�
2 � 2 � -submatrices.

Proof. Let A � Hn � 2. Without loss of generality, assume

ai � � � ����� �� ��� �

n � 2

� t and a j � � � ����� �� ��� �

n � 2
2

�
���	�

�
� ��� �

n � 2
2

� t �

where ai and a j are the ith and jth columns of A, respectively, and � denotes 1

while
�

denotes
�

1. The removal of ai, a j, one of the first
�
n � 2 ��� 2 rows, and

one of the last
�
n � 2 ��� 2 rows of A yields a matrix B satisfying

BtB � �
n � 2 � In

�
Jn

� �
Jn � 2

2 � 1

�
Jn � 2

2 � 1�
Jn � 2

2 � 1 Jn � 2
2 � 1 � �

so

M
�
B � � 1

4
E2

�
eig

�
BtB � �

� 1
4

E2
� �

2 � 2 � n � 2 �
  

� n � 2� ��� �

n � 2

� �
� 1

8
n4 � 1

8
n3 � 1

4
n2 � n

2
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The approach described in Theorem 6 yields a matrix with the maximum number

of odd
�
2 � 2 � -submatrices, as seen by the following result (see Marks et al.

(2003)).

Theorem 7: Let A � An where n � 4k
�

2. The maximum number of odd�
2 � 2 � -submatrices occurs when the rows of A are split into two sets of equal size

such that rows i and j have ai � a j � 0 if i and j are in the different sets and

ai � a j � �
2 if i and j are in the same set.

An interesting connection between solutions of Problems 1 and 2 is

highlighted in the following theorem found in Heyadat and Zhu (2003).

Theorem 8: Let n � 4k
�

2, k a natural number. An Ehlich-Wojtas-type matrix is

a matrix A � An satisfying

AtA � � B 0
0 B �

where B � �
n
�

2 � Im � 2Jm, m � n � 2. Such a matrix exists only if 2
�
n
�

1 � is the

sum of two perfect squares. Ehlich-Wojtas-type matrices satisfy det
�
A � � D �n.

As a result of Theorem 7, Ehlich-Wojtas-type matrices are solutions to

Problem 1. However, not all matrices formed by the method in Theorem 6 are

Ehlich-Wojtas-type. Thus, the set of solutions to Problem 2 is a proper subset of

that of Problem 1 in this case.

4.4. n � 4k � 1

This is the most difficult case of Problem 1. Values of M �n are known only for

the small values of n � 5, 9, and 13. For each known value of n we present

constructive proofs of optimality. The construction technique augments a

Hadamard matrix but becomes computationally burdensome for n � 17.

The preliminary bounds in Theorem 9 are given in Marks et al. (2003).

Theorem 9: If A � Hn, then there exists a matrix B of order n � 4k � 1 satisfying

M
�
B � � 32k4 � 24k3 � 6k

�
2. Consequently, for any n � 4k � 1 the value M �n is

bounded in the following manner:

32k4 � 24k3 � 6k
�

2 	 M �4k � 1 	 32k4 � 24k3 � 4k2
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The matrix B in Theorem 9 is constructed by the addition of a row and column

to A; details can be found in Marks et al. (2003). The difference in the bounds

above is significant for large n, but the lower bound is tighter than the one obtained

in Theorem 10 via the removal of three rows and columns from a Hadamard

matrix.

Theorem 10: Given A � H4k � 1 and k � 1, a matrix B formed by the removal of

three rows and three columns from A attains a maximum of

M
�
B � � 32k4 � 24k3 � 2k

odd
�
2 � 2 � -submatrices.

Proof. Similar to the proofs of Theorems 5 and 6, the maximum number of odd�
2 � 2 � -submatrices obtained by the removal of three rows and columns from

A � Hn � 3 will be attained by a matrix B satisfying

BtB � �
n � 3 � In

�
Jn

�
	���
 2Jn � 3

4 � 1

�
2Jn � 3

4 � 1 0 0�
2Jn � 3

4 � 1 2Jn � 3
4 � 1 0 0

0 0 2Jn � 3
4 � 1

�
2Jn � 3

4 � 1

0 0
�

2Jn � 3
4 � 1 2Jn � 3

4 � 1

�
���� 

Moreover, eig
�
BtB � � �

1 � 4 � 4 � n � 3 �
  

� n � 3� ��� �

n � 3

� and M
�
B � � 32k4 � 24k3 � 2k.

Thus, for n � 4k � 1 the augmentation of a smaller Hadamard matrix provides

better bounds than the decomposition of larger ones. However, this method may

not always yield a solution to Problem 1. For example, the near-perfect matrix A13

in Appendix A contains no 12 � 12 Hadamard submatrix. In the remainder of this

section and in Section 5 we examine the structure of known solutions to n � 4k � 1

and propose construction techniques unrelated to Hadamard matrices.

5 by 5 case

The matrix A5 in Appendix A is near-perfect. The following theorem from

Heyadat and Zhu (2003) describes the inner product structure of A5 and the

existence of other near-perfect matrices for this case.
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Theorem 11: Let A � An, n � 4k � 1, satisfying

AtA �

	���
 n
�

1 ����� �
1

�
1 n

. . .
...

...
. . . . . .

�
1�

1 ����� �
1 n

�
����

be called an Ehlich-type matrix. Such a matrix exists only if 2n
�

1 � 8k � 1 is the

square of an integer.

A near-perfect matrix A of order n � 4k � 1 exists if and only if A is

Ehlich-type. In Heyadat and Zhu (2003), Ehlich-type matrices are shown to also

be solutions to Problem 2.

9 by 9 case

By Theorem 11, an Ehlich-type matrix does not exist for n � 9. However, the

matrix A9 in Appendix A is known to be a solution to Problem 1. The construction

technique for A9 is described with the hope that it may prove useful for larger

values of n � 4k � 1.

Assume M �9 is unknown. Theorem 9 yields 714 	 M �9 	 720 and a matrix A9

with M
�
A9 � � 714 is known; see Appendix A. If A � A9 exists with

M
�
A � � M

�
A9 � , then one of the following two properties holds. Either

(P1) A is near-perfect, or

(P2) A has exactly k � � 1 � 2 � pairs of rows with inner product
�

3 while the

remaining pairs have inner product
�

1.

Such a matrix would have M
�
A � equal to 716, 718, or 720, respectively. A

Ehlich-type matrix does not exist, so M
�
A9 � � M �9 if and only if matrices with

property (P2) do not exist.

If a matrix A with property (P2) exists, then it must have a set P of at least

n
�

2 � 7 rows such that
�
i � j � is near-perfect for all distinct s � t � P. Let

A � � a1 a2

  
a9 � t , then by Theorem 4 assume

a1 � � � � � � � � � � � �
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and that a1 � ai � 1 for all 2 	 i 	 9, or else multiply row ai by
�

1. Furthermore,

assume

a2 � � � � � � � � � � � �
so a2 � a j � �

1 for all 3 	 i 	 9. For a j with 3 	 j 	 9, a1 � a j � 1 so a j consists of

four
�

1s and five 1s. If k denotes the number of 1s in first five positions of a j, then

the following diophantine equation must hold:

�
1 � a2 � a j

� k
� �

5
�

k � � �
5
�

k � � �
4
� �

5
�

k � �
� 4k

�
11


Since k is an integer, k � 3 and a2 � a j � 1 for all j � 3. Up to permutation

similarity, A must have

�
a1 a2 a3 � t �

	
 � � � � � � � � �
� � � � � � � � �
� � � � � � � � �

�� 

The enumeration of all possible row additions to
�
a1 a2 a3 � t above may lead a

matrix A with M
�
A � � M

�
A9 � . Due to the specific inner product structure that such

a matrix must possess, this enumeration is easily handled by a computer.

Therefore, a viable construction technique is to set a goal value of M
�
A � ,

predetermine as many rows of A as possible up to permutation similarity, and

enumerate all possible additions for the remaining rows.

For n � 9, this procedure is not a hard one. In general, however, if A � yields

the best known value for M
�
A � � for some n, then Table 1 illustrates the variety of

possible sets of inner products that must be considered for the rows of a matrix A

with M
�
A � � M

�
A � � . Let K

�
A � denote the set of inner products of all pairs of rows

i and j, i � j, in A. Let K
� �

A � equal the set of the absolute values of all entries in

K
�
A � not equal to 1. For example, if K

�
A � � �

1 � 1 � � 1 � � 1 � 3 � � 5 � , then

K
� �

A � � �
3 � 5 � . Finally, let

�
a � b represent the entry a having multiplicity of b and

define

N1 �
� n � 1

2 � � n
�

1
2 � � N3 �

� n � 3
2 � � n

�
3

2 �
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Table 1. Possible sets of inner products

K
� �

A � M
�
A �� � � � n2 � � N1�

3 � � � n2 � � 1 � N1 � N3� �
3 � 2 � � � n2 � � 2 � N1 � 2N3� �
3 � 3 � �

5 � � � n2 � � 3 � N1 � 3N3� �
3 � 4 � �

5 � 3 � � � n2 � � 4 � N1 � 4N3� �
3 � 5 � �

5 � � 3 � 2 � � � n2 � � 5 � N1 � 5N3� �
3 � 6 � �

5 � � 3 � 3 � � �
5 � 2 � �

7 � � � n2 � � 6 � N1 � 6N3� �
3 � 7 � �

5 � � 3 � 4 � � �
5 � 2 � 3 � �

7 � 3 � � � n2 � � 7 � N1 � 7N3� �
3 � 8 � �

5 � � 3 � 5 � � �
5 � 2 � � 3 � 2 � �

7 � � 3 � 2 � � � n2 � � 8 � N1 � 8N3� �
3 � 9 � �

5 � � 3 � 6 � � �
5 � 2 � � 3 � 3 � � �

5 � 3 � �
7 � � 3 � 3 � � � n2 � � 9 � N1 � 9N3� �

3 � 10 � �
5 � � 3 � 7 � � �

5 � 2 � � 3 � 4 � � �
5 � 3 � 3 � �

7 � � 3 � 4 � � � n2 � � 10 � N1 � 10N3
...

...
...

...
...

...

Distinct values of K
� �

A � aligned horizontally in Table 1 yield the same value

for M
�
A � . For a particular value of K

� �
A � there may exist multiple possibilities for

the inner product structure of A. For example, if A has K
� �

A � � � �
3 � 2 � , then

without loss of generality we may assume a1 � a2 � a1 � a3 � 3 or

a1 � a2 � a3 � a4 � 3, each yielding distinct matrices under Theorem 4.

Following the guidelines of Table 1, a 9 � 9 matrix with property (P2) must

have K
� �

B � � �
3 � or K

� �
B � � � �

3 � 2 � . The program CreateCE.m performs the

necessary enumeration of all possible row additions; see Section 5.3. The sets of

input:

A �
	
 � � � � � � � � �
� � � � � � � � �
� � � � � � � � �

��
with �

1 � v � �
120 � 200 � 300 � 420 � 560 � 718 �

�
2 � v � �

120 � 200 � 300 � 420 � 560 � 716 �
�
3 � v � �

120 � 200 � 300 � 420 � 558 � 716 �


attempts to create matrices with K
� �

A � � �
3 � � � � 3 � 2 � � and

� �
3 � 2 � , respectively.

Each attempt yields no final solutions, so M
�
A9 � � M �9 .

Although the proof is not extended to include other values of n � 4k � 1, we

mention det
�
A9 � � D �n (see Heyadat and Zhu (2003)).
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13 by 13 case

An Ehlich-type matrix exists for n � 13 (see Heyadat and Zhu (2003)) for an

example. The matrix A13 in Appendix A is also Ehlich-type and was created via

the construction technique described in 9 by 9 case in Section 4.4. Up to

permutation similarity, we assume

�
a1 a2 a3 � t �

	
 � � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

��

and a4 is one of

a4a � � � � � � � � � � � � � � � � �
a4b � � � � � � � � � � � � � � � � �
a4c � � � � � � � � � � � � � � � � �
a4d � � � � � � � � � � � � � � � �


With input A � �

a1 a2 a3 a4d � t and

v � �
420 � 630 � 882 � 1176 � 1512 � 1890 � 2310 � 2772 � 3276 � �

CreateCE.m produces A13.

For n � 17, the complete enumeration of possible row additions is not easily

handled by a computer because of the number of cases to consider. A more

sophisticated search algorithm is required to raise the lower bounds for M �n with

n � 4k � 1 and k � 4. Two such search algorithms are presented in following

section.

5. IMPROVING SEARCH HEURISTICS

Although we are not able to prove optimality for the matrices A that attain the

best value currently known for M
�
A � in this section, we provide two heuristic

algorithms that have proved effective for finding optimal or near-optimal solutions

to Problem 1.
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5.1. Discrete Improving Search

Problem 1 can be characterized as a large combinatorial optimization problem

with a nonlinear objective function. The problem is too large for total enumeration

of all possible solutions when n � 17, but discrete local improving search

algorithms provide an alternative. These algorithms attempt to improve a given

solution by making small changes (called moves) to the structure of the solution.

A natural set of moves, ∆, for Problem 1 is the multiplication of a single entry in

A
�
t � by

�
1. A single move δt

i � j � ∆ is a sign flip of entry ai � j of A
�
t � , the current

solution at iteration t. Such a move is improving if

M
�
A

�
t � 1 � � � M

�
δt

i � j � A �
t � � � � M

�
A

�
t � � . Consider the following definition.

Definition 2: A solution x is a local optimum, with respect to ∆, if all δi � j � ∆ lead

to either an infeasible solution or a solution with an objective function value

inferior to that of x.

No move in ∆ leads to a matrix A
�
t � 1 � that is infeasible. Therefore, if A

�
f �

denotes the final solution found by Algorithm 1 below, then it must be a local

optimum. There is no guarantee, however, that M
�
A

�
f � � � M �n .

Algorithm 1: Discrete Improving Search

Step 0: Choose A
�
0 � � An. Set t � 0.

Step 1: If no δt
i � j � ∆ is improving, then stop. A

�
t � is the best solution found.

Step 2: Choose a most improving move in ∆, δ �i � j.
Step 3: Apply δ �i � j to A

�
t � yielding A

�
t � 1 � . Return to Step 1.

A common technique to improve the quality of solutions found by Algorithm 1

is to begin from multiple starting solutions in an attempt to uncover multiple local

optima. Table 2 records the best values of M
�
A � found using this multistart

implementation of Algorithm 1. S denotes the value of M
�
A

�
f � � when

A
�
0 � � 2In

�
Jn. 2In

�
Jn is a reasonable starting solution for Algorithm 1 since

An � 2In
�

Jn is a global optimum for n � 3 � 4 � 5. The remainder of the starting
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solutions for Algorithm 1 are random matrices in which each entry is equally

likely to be a 1 or
�

1. Avg. M
�
A � denotes the average value of M

�
A

�
f � � over 100

restarts with random matrices. M
�
A � � is the best value found. The column U is the

theoretical upper bound, assuming an Ehlich-type matrix exists, and ‘%’ denotes

the percentage that M
�
A � � lies below U .

Table 2. Best values of M
�
A � with multistart

n S Avg. M
�
A � M

�
A � � U %

17 9708 9714.58 9760 9792 0


33%

21 22282 22937.70 22994 23100 0


46%

25 41248 46520.70 46600 46800 0


43%

41 180968 341297.2 341618 344400 0


81%

The cases where n � 25 and n � 41 are of particular interest since an

Ehlich-type matrix may exist in each case, but an example for either case is

unknown.

5.2. Tabu Search

In Algorithm 1 our search is terminated when we reach a matrix for which

there are no improving moves in ∆. Tabu search heuristics are designed to escape

local optima, allowing a wider exploration of the search space, and have been

shown to be highly competitive for a variety of discrete optimization problems (see

Glover (1990) and Glover and Laguna (1998)). One key feature of a tabu search is

a short-term memory list that allows the algorithm to accept non-improving moves

while attempting to avoid cycling back to a previously explored local optimum.

Consider the following algorithm with notation similar to that of Algorithm 1 (see

Glover (1990)). T denotes the tabu list and L is its length.

Additional features can be added to any given tabu search algorithm (see

Glover and Laguna (1998)). For example, an aspiration criteria allows the tabu

status of a move to be overridden if the acceptance of that move yields the best

solution yet found. In our experiments, however, no better solutions were found by

including an aspiration criterion.
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Algorithm 2: Tabu Search

Step 0: Select A
�
0 � � An and tmax. Set t � 0, T � /0, and A � � A

�
0 � .

Step 1: If t � tmax, then stop. A � is the best solution found.

Step 2: Find most improving (least non-improving) non-tabu move δt
i � j � ∆.

Label it δ �i � j.
Step 3: Update A

�
t � 1 � by applying δ �i � j to A

�
t � .

Step 4: If M
�
A

�
t � 1 � � � M

�
A � � , then A � � A

�
t � 1 � .

Step 5: Remove entries of T whose tenure is at least L iterations.

Step 6: Set T � T
� δ �i � j, t � t � 1, and return to Step 1.

Two distinct tabu lists were used in our search. The first disallows moves that

reflip the sign of an entry for L1 iterations. The second disallows two signs in the

same row to be flipped within L2 iterations of each other. Appendix B provides a

detailed summary of our experiments with multiple values of the tabu list lengths.

Table 3 summarizes the results obtained with the best set of parameter values. As

before, one instance of tabu search was initialized with A
�
0 � � 2In

�
Jn. An

additional 100 restarts were initialized with random matrices. The columns of

Table 3 record the same information as the columns in Table 2.

Table 3. Results with best set of parameter values

n S Avg. M
�
A � M

�
A � � U %

17 9768 9763.64 9768 9792 0


25%

21 23016 23026.6 23076 23100 0


10%

25 46648 46650.5 46674 46800 0


27%

41 343512 343567 343636 344400 0


22%

Our tabu search heuristic found better solutions (best and average) than our

discrete improving search algorithm for all n tested. Of course a single instance of

Algorithm 1 may yield a better solution than a single instance of Algorithm 2.
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However, the benefits of a tabu search are obvious when multiple restarts are

considered. In addition, the second tabu list, which was inconsequential for

n � 17 � 21 � 25 was critical in determining high quality solutions for n � 41

(L2 � 5).

Finally, longer experiments with 1000 restarts were tested. The best set of tabu

search parameters from the experiments in Table 3 were used in all 1000 restarts of

the tabu search reported in Table 4. The column headings denote the same

information as in Tables 2 and 3.

Table 4. Results from 1000 restarts of tabu search
n Avg. M

�
A � M

�
A � � U %

17 9764.62 9768 9792 0


25%

21 23025.0 23076 23100 0


10%

25 46652.8 46694 46800 0


23%

41 343574 343648 344400 0


22%

Only small improvements were found (in boldface) for the 1000 restarts. This may

imply that the solutions for n � 17 and 21 in Table 3 are optimal or that another

approach is needed to uncover better solutions.

It remains unclear whether there is a strong connection between optimal

solutions to Problem 1 and Problem 2 for large n � 4k � 1. For example, the

optimal solution to Problem 2 given in Heyadat and Zhu (2003) for n � 17 has

fewer odd
�
2 � 2 � -submatrices than the best solution found with Algorithm 2.

Consequently, the set of matrices that are optimal for Problem 1 and Problem 2 are

disjoint in this case. However, the best solution for n � 21 found by Algorithm 2

has the same determinant as the optimal solution for Problem 2 given in Heyadat

and Zhu (2003). If this solution is also optimal to Problem 1, then the solution sets

overlap.

5.3. Computer Programs

All programs provided in this section are written in MatLab or C/C++. Many

of these programs are available for download at http://www.math.edu/
� rrkinc/det.html.
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1. num even submatrices.m

A simple program to compute M
�
A � for a given matrix A according to (3.1).

2. multistart.cc

A discrete improving search heuristic: Algorithm 1.

3. tabu search.cc

A tabu search heuristic: Algorithm 2.

4. CreateCE.m

Attempts to create a matrix A
�
by appending rows to the input matrix A. Row

additions are accepted if and only if the resulting matrix has v
�
i � odd�

2 � 2 � -submatrices after the addition of the ith row.

6. FUTURE RESEARCH

We have observed structural connections between the set of m � n���
1 � 1 � -matrices with the maximum number of

�
2 � 2 � -submatrices with nonzero

determinant and those with the maximum value of det
�
AtA � . The sets of optimal

solutions for both problems overlap for many values of n and are tied closely to

Hadamard matrices. In particular, the theory behind the existence of Ehlich-type

and Ehlich-Wojtas-type matrices has proved useful for characterizing solutions for

both problems. For the unsolved cases of Problem 1, solutions that attain objective

values within a fraction of one percent of the theoretical optimal value using

improving search heuristics were found. Thus, heuristic search techniques proved

useful in uncovering near-optimal solutions when constructive techniques became

computational burdensome (for n � 17).

In addition to their relationship with Hadamard matrices, optimal solutions to

Problem 1 have other attractive structural properties. For example, consider the

eigenvalues of AnAt
n for the optimal matrices An, n � 1 �

  
� 16, found by the

methods described in this paper; many of these matrices are given in Appendix A

Table 5 gives these values in an appealing form. The repetitive eigenvalue

structure of these solutions may provide further insight into the structure of

optimal matrices to Problem 1.
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Table 5. Eigenvalues of optimal matrices
n eig

�
AtA �

3
�
1 � 4 � 4 �

4
�
4 � 4 � 4 � 4 �

5
�
4 � 4 � 4 � 4 � 9 �

6
�
2 � 2 � 8 � 8 � 8 � 8 �

7
�
1 � 8 � 8 � 8 � 8 � 8 � 8 �

8
�
8 � 8 � 8 � 8 � 8 � 8 � 8 � 8 �

9
�
4 � 29

2

� �
57
2 � 29

2 � �
57
2 � 8 � 8 � 8 � 8 � 8 � 8 �

10
�
2 � 2 � 12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 �

11
�
1 � 12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 �

12
�
12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 �

13
�
12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 � 12 � 25 �

14
�
2 � 2 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 �

15
�
1 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 �

16
�
16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 � 16 �

Another approach for determining solutions to Problem 1 is to consider

directly the discrete optimization problem:

max f
�
A � � trC2

�
AAt �

s


t


ai � j � � � 1 � 1 � � 1 	 i 	 m � 1 	 j 	 n

In this form the problem can be attacked with traditional integer programming

techniques. In addition, maximizing f
�
A � over the linear relaxation of the

constraints �
1 	 ai � j 	 1 � 1 	 i 	 m � 1 	 j 	 n

may provide high quality bounds and/or good starting solutions for the remaining

unsolved cases.
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APPENDIX A. MATRICES An SATISFYING M
�
An � � M �n

Results for the set of An in the solution set of Problem 1 found throughout our

research.

n M
�
An � M

�
An � � M �n? D

�
An � � D �n?

2 1 � �
3 6 � �
4 24 � �
5 60 � �
6 129 � sometimes
7 252 � X
8 448 � �
9 714 � �

10 1105 � sometimes
11 1650 � X
12 2376 � �
13 3276 � �
17 9768 unknown X
21 23076 unknown most likely
25 46694 unknown unknown
41 343648 unknown unknown

An satisfying M
�
An � � M �n:

A2 � � � �
� � � A3 �

	
 � � �
� � �
� � �

��
A4 �

	��
 � � � �
� � � �
� � � �
� � � �

�
���

A5 �

	����
 � � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
����� A6 �

	������

� � � � � �
� � � � � �
� � � � � �
� � � � � �� � � � � �� � � � � �

�
�������
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A7 �

	��������

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�
��������� A8 �

	����������

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�
�����������

A9 �

	������������


� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

�
�������������

A10 �

	��������������


� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �
� � � � � � � � � �

�
���������������

A11 �

	����������������


� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

�
�����������������
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A12 �

	������������������


� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

�
�������������������

A13 �

	��������������������


� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �� � � � � � � � � � � � �

�
���������������������
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APPENDIX B. TABU SEARCH RESULTS

17 � 17: based on tmax � 200 and an initial seed of 123456789.

L1 L2 S Avg. M
�
A � M

�
A � �

50 8 9742 9748.50 9768
50 5 9758 9753.18 9768
50 3 9750 9755.04 9768
50 1 9756 9756.92 9768
30 8 9746 9751.64 9768
30 5 9768 9757.70 9768
30 3 9760 9758.82 9768
30 1 9760 9761.78 9768
10 8 9760 9758.52 9768
10 5 9768 9761.78 9768
10 3 9760 9762.86 9768
10 1 9768 9763.64 9768
5 8 9760 9760.14 9768
5 5 9754 9760.04 9768
5 3 9760 9759.96 9768
5 1 9768 9761.46 9768

21 � 21: based on tmax � 300 and an initial seed of 123456789.

L1 L2 S Avg. M
�
A � M

�
A � �

50 8 23002 23001.5 23020
50 5 23010 23006.8 23034
50 3 23010 23009.0 23054
50 1 23000 23007.3 23032
30 8 22992 23005.6 23024
30 5 22974 23010.5 23032
30 3 23000 23012.9 23050
30 1 23004 23012.5 23048
10 8 23014 23017.7 23076
10 5 23050 23019.4 23068
10 3 23018 23022.6 23076
10 1 23024 23023.1 23076
5 8 23000 23019.0 23076
5 5 23002 23022.0 23076
5 3 23016 23022.2 23076
5 1 23016 23026.6 23076
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25 � 25: based on tmax � 400 and an initial seed of 123456789.

L1 L2 S Avg. M
�
A � M

�
A � �

50 8 46610 46624.1 46652
50 5 46610 46626.7 46650
50 3 46632 46629.7 46656
50 1 46614 46628.8 46656
30 8 46612 46629.8 46650
30 5 46636 46633.4 46660
30 3 46620 46636.3 46664
30 1 46626 46638.2 46668
10 8 46630 46643.9 46668
10 5 46632 46649.5 46672
10 3 46640 46650.0 46668
10 1 46648 46650.5 46674
5 8 46634 46644.9 46664
5 5 46646 46645.1 46672
5 3 46640 46645.0 46674
5 1 46628 46644.1 46668

41 � 41: based on tmax � 900 and an initial seed of 123456789.

L1 L2 S Avg. M
�
A � M

�
A � �

50 8 343470 343506 343574
50 5 343480 343512 343570
50 3 343380 343527 343568
50 1 343378 343520 343566
30 8 343460 343532 343580
30 5 343446 343543 343592
30 3 343498 343546 343598
30 1 343394 343546 343608
10 8 343466 343560 343616
10 5 343512 343567 343636
10 3 343472 343572 343622
10 1 343388 343574 343624
5 8 343478 343562 343620
5 5 343510 343496 343604
5 3 343488 343520 343624
5 1 343410 343531 343616
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